Recent developments and applications of nanocomposites in solar cells: a review

Authors

  • Sami Saadi Department of Mechanical Engineering, Islamic Azad University, Ahvaz Branch, Iran
  • Behzad Nazari School of Materials and Metallurgical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran

DOI:

https://doi.org/10.29252/jcc.1.1.7

Keywords:

Composites, Solar-cell, Perovskite, nanomaterial, Amorphous Silicon

Abstract

These days, solar cells have attracted considerable attentions because they are environment-friendly sources of electric power. The present review is focused on composites and materials that are used in the field of solar cells, including Si-based solar cells, thin film solar cells, dye-Sensitized solar cells (DSSC), Quantum dot solar cells (QDSC) and Perovskite solar cells (PSC). TiO2 based nanocomposites, which are widely applicable in the solar cells are also reviewed.

References

A. Sánchez, E. Torres, R.d.A. Kalid, Renewable energy generation for the ru-ral electrification of isolated communities in the Amazon Region, Renewable and Sustainable Energy Reviews 49 (2015) 278-290.

K.M.K. Yu, I. Curcic, J. Gabriel, S.C.E. Tsang, Recent advances in CO2 capture and utilization, ChemSusChem: Chemistry & Sustainability Energy & Materials 1(11) (2008) 893-899.

B. Li, An Assessment of North Carolina’s Future Electricity System Under Uncertainty, (2017).

D.P. Van Vuuren, A. Faber, Growing within limits A report to the Global Assembly 2009 of the Club of Rome, Netherlands, 2009, p. 128.

N.S. Lewis, G. Crabtree, A.J. Nozik, M.R. Wasielewski, P. Alivisatos, H. Kung, J. Tsao, E. Chandler, W. Walukiewicz, M. Spitler, Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Ener-gy Utilization, April 18-21, 2005, DOESC (USDOE Office of Science (SC)), 2005.

S. Gardelis, A. Nassiopoulou, P. Manousiadis, ?. Vouroutzis, N. Frangis, A silicon-wafer based pn junction solar cell by aluminum-induced recrystallization and doping, Applied Physics Letters 103(24) (2013) 241114.

W.-S. Jeong, J.-W. Lee, S. Jung, J.H. Yun, N.-G. Park, Evaluation of external quantum efficiency of a 12.35% tandem solar cell comprising dye-sensitized and CIGS solar cells, Solar Energy Materials and Solar Cells 95(12) (2011) 3419-3423.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Materials 4(11) (2005) 864-868.

P.V. Kamat, Quantum dot solar cells. The next big thing in photovoltaics, The journal of physical chemistry letters 4(6) (2013) 908-918.

A. Goetzberger, J. Luther, G. Willeke, Solar cells: past, present, future, Solar Energy Materials and Solar Cells 74(1) (2002) 1-11.

D.M. Chapin, C. Fuller, G. Pearson, A new silicon p?n junction photocell for converting solar radiation into electrical power, Journal of Applied Physics 25(5) (1954) 676-677.

Z. Zhou, L. Yang, J. Gao, X. Chen, Structure–Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging, Advanced Materials 31(8) (2019) 1804567.

M.S.N. Shahrbabak, F. Sharifianjazi, D. Rahban, A. Salimi, A Comparative Investigation on Bioactivity and Antibacterial Properties of Sol-Gel Derived 58S Bioactive Glass Substituted by Ag and Zn, Silicon 11(6) (2019) 2741-2751.

Z. Goudarzi, N. Parvin, F. Sharifianjazi, Formation of hydroxyapatite on sur-face of SiO2– P2O5–CaO–SrO–ZnO bioactive glass synthesized through sol-gel route, Ceramics International 45(15) (2019) 19323-19330.

F. Sharifianjazi, N. Parvin, M. Tahriri, Formation of apatite nano-needles on novel gel derived SiO2-P2O5-CaO-SrO-Ag2O bioactive glasses, Ceramics Interna-tional 43(17) (2017) 15214-15220.

M. Barekat, R.S. Razavi, F. Sharifianjazi, Synthesis and the Surface Resistiv-ity of Carbon Black Pigment on Black Silicone Thermal Control Coating, Synthe-sis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 45(4) (2015) 502-506.

S. Rahimi, F. SharifianJazi, A. Esmaeilkhanian, M. Moradi, A.H. Safi Samghabadi, Effect of SiO2 content on Y-TZP/Al2O3 ceramic-nanocomposite properties as potential dental applications, Ceramics International 46(8, Part A) (2020) 10910-10916.

E. Ghasali, M. Alizadeh, A.H. Pakseresht, T. Ebadzadeh, Preparation of sili-con carbide/carbon fiber composites through high-temperature spark plasma sin-tering, Journal of Asian Ceramic Societies 5(4) (2017) 472-478.

A. Goetzberger, C. Hebling, Photovoltaic materials, past, present, future, So-lar energy materials and solar cells 62(1-2) (2000) 1-19.

M. Imamzai, M. Aghaei, Y. Hanum Md Thayoob, M. Forouzanfar, A review on comparison between traditional silicon solar cells and thin-film CdTe solar cells, Proceedings of National Graduate Conference (Nat-Grad, 2012, pp. 1-5.

Types of Solar Panels, Grein Energy., (2015).

M.A. Maehlum, Energy informative the homeowner’s guide to solar panels, best thin film solar panels—Amorphous, cadmium telluride or CIGS, Last updated 6 (2015).

J. Liu, Y. Yao, S. Xiao, X. Gu, Review of status developments of high-effi-ciency crystalline silicon solar cells, Journal of Physics D: Applied Physics 51(12) (2018) 123001.

Y. Zhuang, S. Zhong, Z. Huang, W. Shen, Versatile strategies for improving the performance of diamond wire sawn mc-Si solar cells, Solar Energy Materials and Solar Cells 153 (2016) 18-24.

Y. Zhang, J. Tao, Y. Chen, Z. Xiong, M. Zhong, Z. Feng, P. Yang, J. Chu, A large-volume manufacturing of multi-crystalline silicon solar cells with 18.8% efficiency incorporating practical advanced technologies, RSC advances 6(63) (2016) 58046-58054.

F. Cao, K. Chen, J. Zhang, X. Ye, J. Li, S. Zou, X. Su, Next-generation multi-crystalline silicon solar cells: Diamond-wire sawing, nano-texture and high efficiency, Solar Energy Materials and Solar Cells 141 (2015) 132-138.

J. Nelson, Imperial College Press, The physics of solar cells, Singapore, 2003.

M. Tao, Physics of Solar Cells, Terawatt Solar Photovoltaics, Springer2014, pp. 21-45.

W. Shen, Z. Li, Physics and Devices of Silicon Heterojunction Solar Cells, Beijing: Science Press, 2014.

S. Zhang, Study of fluorine-doped tin oxide (FTO) thin films for photovoltaics applications, Grenoble Alpes, 2017.

M.A. Green, J. Zhao, A. Wang, P.J. Reece, M. Gal, Efficient silicon light-emit-ting diodes, Nature 412(6849) (2001) 805-808.

C. Battaglia, A. Cuevas, S. De Wolf, High-efficiency crystalline silicon solar cells: status and perspectives, Energy & Environmental Science 9(5) (2016) 1552-1576.

B. Srinivas, S. Balaji, M. Nagendra Babu, Y. Reddy, Review on present and advance materials for solar cells, International Journal of Engineering Re-search-Online 3 (2015) 178-182.

P. Würfel, U. Würfel, Physics of solar cells: from basic principles to advanced concepts, John Wiley & Sons, USA, 2016.

S. Dimitrijev, Principles of semiconductor devices, Oxford university press New York, USA, 2012.

M. Bertolli, Solar Cell Materials. Course: Solid State II, Department of Phys-ics, University of Tennessee, USA, 2008.

M.A. Green, Prospects for photovoltaic efficiency enhancement using low-di-mensional structures, Nanotechnology 11(4) (2000) 401-405.

R. Bergmann, Crystalline Si thin-film solar cells: a review, Applied physics A 69(2) (1999) 187-194.

L.C. Lew Yan Voon, L.R. Ram-Mohan, R.A. Soref, Electronic and optical properties of (001) Si/ZnS heterostructures, Applied Physics Letters 70(14) (1997) 1837-1839.

P. Yianoulis, R. Nelson, Effect of surface defects on the ionization energies of adsorbed dye molecules, Photographic Sci. Eng 18 (1974) 94-99.

P. Yianoulis, R.C. Nelson, Coulomb effect on the energy levels in molecular crystals, Molecular Physics 39(1) (1980) 261-269.

S. Zhang, Y. Qin, J. Zhu, J. Hou, Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor, Advanced Materials 30(20) (2018) 1800868.

F. Gao, Advanced Nanomaterials for Solar Cells and Light Emitting Diodes, Elsevier Science, Netherlands, 2019.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, A polymer tandem solar cell with 10.6% power conversion efficiency, Nature communications 4(1) (2013) 1-10.

M.A. Halim, Harnessing sun’s energy with quantum dots based next genera-tion solar cell, Nanomaterials 3(1) (2013) 22-47.

O.E. Semonin, J.M. Luther, S. Choi, H.-Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell, Science 334(6062) (2011) 1530-1533.

E. Asadi, A. Fassadi Chimeh, S. Hosseini, S. Rahimi, B. Sarkhosh, L. Bazli, R. Bashiri, A.H. Vakili Tahmorsati, A review of clinical applications of graphene quantum dot-based composites, Journal of Composites and Compounds 1(1) (2019) 31-40.

V. Salimian Rizi, F. Sharifianjazi, H. Jafarikhorami, N. Parvin, L. Saei Fard, M. Irani, A. Esmaeilkhanian, Sol–gel derived SnO2/Ag2O ceramic nanocomposite for H2 gas sensing applications, Materials Research Express 6(11) (2019) 1150g2.

X.-F. Shi, X.-Y. Xia, G.-W. Cui, N. Deng, Y.-Q. Zhao, L.-H. Zhuo, B. Tang, Multiple exciton generation application of PbS quantum dots in ZnO@ PbS/graphene oxide for enhanced photocatalytic activity, Applied Catalysis B: Envi-ronmental 163 (2015) 123-128.

Q. Zhang, Z. Jin, F. Li, Z. Xia, Y. Yang, L. Xu, First application of CoO na-norods as efficient counter electrode for quantum dots-sensitized solar cells, Solar Energy Materials and Solar Cells (2019) 110307.

A. Badawi, W.O. Al-Gurashi, A.M. Al-Baradi, N. Al-Hosiny, Alloying cadmi-um cobalt sulfide quantum dots for solar cells applications, Materials Science in Semiconductor Processing 95 (2019) 1-6.

S. Das, I. Alam, J. Raiguru, B. Subramanyam, P. Mahanandia, A facile method to synthesize CZTS quantum dots for solar cell applications, Physica E: Low-di-mensional Systems and Nanostructures 105 (2019) 19-24.

N. Ahn, D.-Y. Son, I.-H. Jang, S.M. Kang, M. Choi, N.-G. Park, Highly repro-ducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide, Journal of the Amer-ican Chemical Society 137(27) (2015) 8696-8699.

T. Casey, An Article on Perovskites Will Power New Low-Cost & Highly Efficient Solar Cells, Clean Technical 3 (2015).

D. Shi, Y. Zeng, W. Shen, Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping, Scientific reports 5 (2015) 16504.

M.H. Ann, J. Kim, M. Kim, G. Alosaimi, D. Kim, N.Y. Ha, J. Seidel, N. Park, J.S. Yun, J.H. Kim, Device design rules and operation principles of high-power perovskite solar cells for indoor applications, Nano Energy 68 (2020) 104321.

C. Pothiklang, K. Hongsith, P. Ruankham, Synthesis of Perovskite Film by Using Lead Nitrate as Precursor for Perovskite Solar Cell Applications, Materials Today: Proceedings 17 (2019) 1224-1230.

N. Mufti, I.K. Laila, A. Fuad, A. Taufiq, The Impact of Growth Temperature on Nanorod Morphology and Optical Properties for CH3NH3PbI3 Perovskite So-lar Cell Device Application, Materials Today: Proceedings 17 (2019) 1627-1636.

K.U. Thakur, R. Kisslinger, K. Shankar, One-Dimensional Electron Transport Layers for Perovskite Solar Cells, Nanomaterials 7(5) (2017).

Z. Hu, S. Dong, Q. Xue, R. Xu, H.-L. Yip, F. Huang, Y. Cao, In-situ synthesis of metal nanoparticle-polymer composites and their application as efficient interfacial materials for both polymer and planar heterojunction perovskite solar cells, Organic Electronics 27 (2015) 46-52.

Y. Liu, F. Lang, T. Dittrich, A. Steigert, C.-H. Fischer, T. Köhler, P. Plate, J. Rappich, M.C. Lux-Steiner, M. Schmid, Enhancement of photocurrent in an ultra-thin perovskite solar cell by Ag nanoparticles deposited at low temperature, RSC Advances 7(3) (2017) 1206-1214.

T. Hyeon, L. Manna, S.S. Wong, Sustainable nanotechnology, Chemical Soci-ety Reviews 44(16) (2015) 5755-5757.

S.B. Khan, Nanomaterials for Environmental Applications and their Fascinat-ing Attributes, Bentham Science Publishers, Netherlands, 2018.

X. Chen, C. Li, M. Grätzel, R. Kostecki, S.S. Mao, Nanomaterials for re-newable energy production and storage, Chemical Society Reviews 41(23) (2012) 7909-7937.

E.S. Shibu, A. Sonoda, Z. Tao, Q. Feng, A. Furube, S. Masuo, L. Wang, N. Tamai, M. Ishikawa, V. Biju, Energy materials: supramolecular nanoparticles for solar energy harvesting, Nano Reviews 4(1) (2013) 21079.

S. Suhaimi, M.M. Shahimin, Z. Alahmed, J. Chyský, A. Reshak, Materials for enhanced dye-sensitized solar cell performance: Electrochemical application, Int. J. Electrochem. Sci 10(4) (2015) 2859-2871.

L. Bazli, M. Siavashi, A. Shiravi, A review of carbon nanotube/TiO2 composite prepared via sol-gel method, Journal of Composites and Compounds 1(1) (2019) 1-9.

N.G. Park, M.G. Kang, K.M. Kim, K.S. Ryu, S.H. Chang, D.K. Kim, J. van de Lagemaat, K.D. Benkstein, A.J. Frank, Morphological and Photoelectrochemical Characterization of Core?Shell Nanoparticle Films for Dye-Sensitized Solar Cells: Zn?O Type Shell on SnO2 and TiO2 Cores, Langmuir 20(10) (2004) 4246-4253.

C. Longo, M.-A. De Paoli, Dye-sensitized solar cells: a successful combina-tion of materials, Journal of the Brazilian Chemical Society 14 (2003) 898-901.

M. Shakeel Ahmad, A.K. Pandey, N. Abd Rahim, Advancements in the devel-opment of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review, Renewable and Sustainable Energy Reviews 77 (2017) 89-108.

S. Chuangchote, T. Sagawa, S. Yoshikawa, Efficient dye-sensitized solar cells using electrospun TiO2 nanofibers as a light harvesting layer, Applied Physics Let-ters 93(3) (2008) 033310.

N.A. Ilahi, R. Suryana, F. Nurrosyid, N.T. Linda Kusuma, Electrospinning Ti-tanium Dioxide (TiO2) nanofiber for dye sensitized solar cells based on Bryophyta as a sensitizer, Journal of Physics Conference Series (Online) 795(1) (2017) 7.

J. Sun, X. Yang, L. Zhao, B. Dong, S. Wang, Ag-decorated TiO2 nanofibers for highly efficient dye sensitized solar cell, Materials Letters 260 (2020) 126882.

J.V. Patil, S.S. Mali, A.P. Patil, P.S. Patil, C.K. Hong, Highly efficient mixed-halide mixed-cation perovskite solar cells based on rGO-TiO2 composite nanofibers, Energy 189 (2019) 116396.

V.P. Dinesh, R. Sriram kumar, A. Sukhananazerin, J. Mary Sneha, P. Manoj Kumar, P. Biji, Novel stainless steel based, eco-friendly dye-sensitized solar cells using electrospun porous ZnO nanofibers, Nano-Structures & Nano-Objects 19 (2019) 100311.

M. Motlak, A.M. Hamza, M.G. Hammed, N.A.M. Barakat, Cd-doped TiO2 nanofibers as effective working electrode for the dye sensitized solar cells, Materi-als Letters 246 (2019) 206-209.

Y.-H. Nien, H.-H. Chen, H.-H. Hsu, P.-Y. Kuo, J.-C. Chou, C.-H. Lai, G.-M. Hu, C.-H. Kuo, C.-C. Ko, Enhanced photovoltaic conversion efficiency in dye-sen-sitized solar cells based on photoanode consisting of TiO2/GO/Ag nanofibers, Vac-uum 167 (2019) 47-53.

Y.-Y. Liu, X.-Y. Ye, Q.-Q. An, B.-X. Lei, W. Sun, Z.-F. Sun, A novel synthesis of the bottom-straight and top-bent dual TiO2 nanowires for dye-sensitized solar cells, Advanced Powder Technology 29(6) (2018) 1455-1462.

S. Ni, D. Wang, F. Guo, S. Jiao, Y. Zhang, J. Wang, B. Wang, L. Yuan, L. Zhang, L. Zhao, Efficiency improvement of TiO2 nanowire arrays based dye-sen-sitized solar cells through further enhancing the specific surface area, Journal of Crystal Growth 505 (2019) 62-68.

M.G.C.M. Kumari, C.S. Perera, B.S. Dassanayake, M.A.K.L. Dissanayake, G.K.R. Senadeera, Highly efficient plasmonic dye-sensitized solar cells with silver nanowires and TiO2 nanofibres incorporated multi-layered photoanode, Electro-chimica Acta 298 (2019) 330-338.

X. Liang, Y. Cheng, X. Xu, R. Dong, D. Li, Z. Zhou, R. Wei, G. Dong, S.-W. Tsang, J.C. Ho, Enhanced performance of perovskite solar cells based on vertical TiO2 nanotube arrays with full filling of CH3NH3PbI3, Applied Surface Science 451 (2018) 250-257.

C. Liu, T. Li, Y. Zhang, T. Kong, T. Zhuang, Y. Cui, M. Fang, W. Zhu, Z. Wu, C. Li, Silver nanoparticle modified TiO2 nanotubes with enhanced the efficiency of dye-sensitized solar cells, Microporous and Mesoporous Materials 287 (2019) 228-233.

W.-Y. Rho, H.-S. Kim, W.-J. Chung, J.S. Suh, B.-H. Jun, Y.-B. Hahn, En-hancement of power conversion efficiency with TiO2 nanoparticles/nanotubes-sil-ver nanoparticles composites in dye-sensitized solar cells, Applied Surface Science 429 (2018) 23-28.

A.R. Jeyaraman, S.K. Balasingam, C. Lee, H. Lee, B. Balakrishnan, S. Man-ickam, M. Yi, H.-J. Kim, K. Sivalingam Nallathambi, Y. Jun, H. Kuzhandaivel, Enhanced solar to electrical energy conversion of titania nanoparticles and nano-tubes-based combined photoanodes for dye-sensitized solar cells, Materials Letters 243 (2019) 180-182.

M. Batmunkh, M.J. Biggs, J.G. Shapter, Carbon Nanotubes for Dye-Sensi-tized Solar Cells, Small 11(25) (2015) 2963-2989.

F.W. Low, C.W. Lai, Recent developments of graphene-TiO2 composite nano-materials as efficient photoelectrodes in dye-sensitized solar cells: A review, Re-newable and Sustainable Energy Reviews 82 (2018) 103-125.

C.-C. Ting, W.-S. Chao, Efficiency improvement of the DSSCs by building the carbon black as bridge in photoelectrode, Applied Energy 87(8) (2010) 2500-2505.

H. Jaafar, Z.A. Ahmad, M.F. Ain, The use of carbon black-TiO2 composite prepared using solid state method as counter electrode and E. conferta as sensitiz-er for dye-sensitized solar cell (DSSC) applications, Optical Materials 79 (2018) 366-371.

M.U. Rahman, F. Xie, X. Sun, M. Wei, Palladium nanoparticles on nitrogen doped acetylene carbon black as an efficient counter electrode for dye-sensitized solar cells, Journal of Electroanalytical Chemistry 848 (2019) 113317.

J. Nissfolk, K. Fredin, A. Hagfeldt, G. Boschloo, Recombination and Trans-port Processes in Dye-Sensitized Solar Cells Investigated under Working Condi-tions, The Journal of Physical Chemistry B 110(36) (2006) 17715-17718.

J. Cai, Z. Chen, J. Li, Y. Wang, D. Xiang, J. Zhang, H. Li, Enhanced conver-sion efficiency of dye-sensitized solar cells using a CNT-incorporated TiO2 slur-ry-based photoanode, AIP Advances 5(2) (2015) 027118.

H. Peng, X. Sun, W. Weng, X. Fang, Polymer Materials for Energy and Elec-tronic Applications, Elsevier Science, Netherlands, 2016.

J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Windle, Ul-tra-low electrical percolation threshold in carbon-nanotube-epoxy composites, Polymer 44(19) (2003) 5893-5899.

J.D. Roy-Mayhew, I.A. Aksay, Graphene Materials and Their Use in Dye-Sen-sitized Solar Cells, Chemical Reviews 114(12) (2014) 6323-6348.

T. Chen, W. Hu, J. Song, G.H. Guai, C.M. Li, Interface Functionalization of Photoelectrodes with Graphene for High Performance Dye-Sensitized Solar Cells, Advanced Functional Materials 22(24) (2012) 5245-5250.

Y.-B. Tang, C.-S. Lee, J. Xu, Z.-T. Liu, Z.-H. Chen, Z. He, Y.-L. Cao, G. Yuan, H. Song, L. Chen, L. Luo, H.-M. Cheng, W.-J. Zhang, I. Bello, S.-T. Lee, Incor-poration of Graphenes in Nanostructured TiO2 Films via Molecular Grafting for Dye-Sensitized Solar Cell Application, ACS Nano 4(6) (2010) 3482-3488.

H. Wang, Y.H. Hu, Graphene as a counter electrode material for dye-sensi-tized solar cells, Energy & Environmental Science 5(8) (2012) 8182-8188.

N. Yang, J. Zhai, D. Wang, Y. Chen, L. Jiang, Two-Dimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar Cells, ACS Nano 4(2) (2010) 887-894.

V.S. Manikandan, A.K. Palai, S. Mohanty, S.K. Nayak, Hydrothermally syn-thesized self-assembled multi-dimensional TiO2/Graphene oxide composites with efficient charge transfer kinetics fabricated as novel photoanode for dye sensitized solar cell, Journal of Alloys and Compounds 793 (2019) 400-409.

A. Timoumi, S.N. Alamri, H. Alamri, The development of TiO2-graphene oxide nano composite thin films for solar cells, Results in Physics 11 (2018) 46-51.

S.N. Sadikin, M.Y.A. Rahman, A.A. Umar, T.H.T. Aziz, Improvement of dye-sensitized solar cell performance by utilizing graphene-coated TiO2 films pho-toanode, Superlattices and Microstructures 128 (2019) 92-98.

C. Jeganathan, T.C. Sabari Girisun, S. Vijaya, S. Anandan, Improved charge collection and photo conversion of bacteriorhodopsin sensitized solar cells coupled with reduced graphene oxide decorated one-dimensional TiO2 nanorod hybrid pho-toanodes, Electrochimica Acta 319 (2019) 909-921.

R. Akilimali, G.S. Selopal, D. Benetti, I. Serrano-Esparza, P.A. Algara-bel, J.M. De Teresa, Z.M. Wang, B. Stansfield, H. Zhao, F. Rosei, Hybrid TiO2-Graphene nanoribbon photoanodes to improve the photoconversion efficiency of dye sensitized solar cells, Journal of Power Sources 396 (2018) 566-573.

S.S. Kanmani, K. Ramachandran, Synthesis and characterization of TiO2/ZnO core/shell nanomaterials for solar cell applications, Renewable Energy 43 (2012) 149-156.

S. Panigrahi, D. Basak, Core–shell TiO2@ZnO nanorods for efficient ultravi-olet photodetection, Nanoscale 3(5) (2011) 2336-2341.

E. Gharoy Ahangar, M.H. Abbaspour-Fard, N. Shahtahmassebi, M. Khojas-tehpour, P. Maddahi, Preparation and Characterization of PVA/ZnO Nanocompos-ite, Journal of Food Processing and Preservation 39(6) (2015) 1442-1451.

M. Al-Fori, S. Dobretsov, M.T.Z. Myint, J. Dutta, Antifouling properties of zinc oxide nanorod coatings, Biofouling 30(7) (2014) 871-882.

S. Liang, K. Xiao, Y. Mo, X. Huang, A novel ZnO nanoparticle blended poly-vinylidene fluoride membrane for anti-irreversible fouling, Journal of Membrane Science 394-395 (2012) 184-192.

I. Tajzad, E. Ghasali, Production methods of CNT-reinforced Al matrix composites: a review, Journal of Composites and Compounds 2(2) (2020) 1-9.

Y. Cui, W. Wang, N. Li, R. Ding, K. Hong, Hetero-seed meditated method to synthesize ZnO/TiO2 multipod nanostructures with ultra-high yield for dye-sensi-tized solar cells, Journal of Alloys and Compounds 805 (2019) 868-872.

M. Zhong, L. Chai, Y. Wang, Core-shell structure of ZnO@TiO2 nanorod arrays as electron transport layer for perovskite solar cell with enhanced efficiency and stability, Applied Surface Science 464 (2019) 301-310.

N. Rajamanickam, S.S. Kanmani, K. Jayakumar, K. Ramachandran, On the possibility of ferromagnetism and improved dye-sensitized solar cells efficiency in TiO2/ZnO core/shell nanostructures, Journal of Photochemistry and Photobiology A: Chemistry 378 (2019) 192-200.

Y. Zhang, X. Zhong, D. Zhang, W. Duan, X. Li, S. Zheng, J. Wang, TiO2 na-norod arrays/ZnO nanosheets heterostructured photoanode for quantum-dot-sensi-tized solar cells, Solar Energy 166 (2018) 371-378.

Article DOR: 20.1001.1.26765837.2019.1.1.7.6

Graphycal Abstract

Downloads

Published

2019-12-31

How to Cite

Saadi, S., & Nazari, B. (2019). Recent developments and applications of nanocomposites in solar cells: a review. Journal of Composites and Compounds, 1(1), 41–50. https://doi.org/10.29252/jcc.1.1.7

Issue

Section

Review Articles