In-vitro and in-vivo examination for bioceramics degradation

Authors

  • Shadi Askari Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
  • Erfan Yazdani School of Medicine, North Khorasan University of Medical Sciences, Bojnord, Iran
  • Lili Arabuli School of Science and Technology, University of Georgia, Tbilisi, Georgia
  • Hamed Goldadi Department of medical science, University of Bojnord, Bojnord, Iran
  • Seyed AmirAbbas Shahidi Marnani Faculty of Medical Sciences, University of Isfahan, Isfahan, Iran
  • Mohammad Emami General Physician, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

DOI:

https://doi.org/10.52547/jcc.4.3.7

Keywords:

Degardation, in vitro, in vivo, bioceramics

Abstract

Bone is a composite of collagen fibers that are organized by calcium phosphates nanocrystals. Bone tissue engineering has been continuously developing since the concept of “tissue engineering” has been proposed. Biomaterials that are used as the basic material for the fabrication of scaffolds play a vital role in bone tissue engineering. Calcium phosphates and bioactive glasses were the first bioceramics that were specifically developed for bone repair. Biological responses such as bone bonding and the biodegradation properties of these materials are very important in clinical applications. This paper aims to introduce a strategy to review the difference between the in-vivo and in-vitro investigation of such bioceramics since there are several differences between mechanisms of in-vitro and in-vitro investigations. In this regard, various biological degradation mechanisms are discussed and the effects of additives such as ions and metals on the performance of the degradation behavior of bioceramics scaffolds are reviewed. It was found that additives can enhance the performance of the bioceramics scaffolds by affecting their biodegradation performance. We can change the bioceramics composition indefinitely and in a controlled fashion to tailor their dissolution rate. The presence of some additives of mineral origins within the calcium phosphate structure can affect the crystal lattice, and therefore can accelerate their dissolution as well as their biodegradability.

References

D. Shekhawat, A. Singh, M.K. Banerjee, T. Singh, A. Patnaik, Bioceramic composites for orthopaedic applications: A comprehensive review of mechanical, biological, and microstructural properties, Ceramics International 47(3) (2021) 3013-3030.

T. Kokubo, Bioceramics and their clinical applications, Elsevier2008.

V. Pal Singh Sidhu, R. Borges, M. Yusuf, S. Mahmoudi, S. Fallah Ghorbani, M. Hosseinikia, P. Salahshour, F. Sadeghi, M. Arefian, A comprehensive review of bioactive glass: synthesis, ion substitution, application, challenges, and future perspectives, Journal of Composites and Compounds 3(9) (2021) 247-261.

L. Nie, J. Suo, P. Zou, S. Feng, Preparation and properties of biphasic calcium phosphate scaffolds multiply coated with HA/PLLA nanocomposites for bone tissue engineering applications, Journal of Nanomaterials 2012 (2012).

S.-I. Roohani-Esfahani, S. Nouri-Khorasani, Z. Lu, R. Appleyard, H. Zreiqat, The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite–PCL composites, Biomaterials 31(21) (2010) 5498-5509.

G.L. Koons, M. Diba, A.G. Mikos, Materials design for bone-tissue engineering, Nature Reviews Materials 5(8) (2020) 584-603.

A.R. Amini, C.T. Laurencin, S.P. Nukavarapu, Bone tissue engineering: recent advances and challenges, Critical Reviews™ in Biomedical Engineering 40(5) (2012).

M. Amiri, S. Padervand, V.T. Targhi, S.M.M. Khoei, Investigation of aluminum oxide coatings created by electrolytic plasma method in different potential regimes, Journal of Composites and Compounds 2(4) (2020) 115-122.

A. Moghanian, F. Sharifianjazi, P. Abachi, E. Sadeghi, H. Jafarikhorami, A. Sedghi, Production and properties of Cu/TiO2 nano-composites, Journal of Alloys and Compounds 698 (2017) 518-524.

M. Reisi Nafchi, R. Ebrahimi-kahrizsangi, Synthesis of Zn-Co-TiO2 nanocomposite coatings by electrodeposition with photocatalytic and antifungal activities, Journal of Composites and Compounds 3(9) (2021) 213-217.

M. Amiri, V.T. Targhi, S. Padervand, S.M.M. Khoei, Corrosion behavior of aluminum oxide coatings created by electrolytic plasma method under different potential regimes, Journal of Composites and Compounds 2(4) (2020) 129-137.

A. Abuchenari, B. Nazariyan Khozani, Effects of Mg and MgO Nanoparticles on Microstructural and Mechanical Properties of Aluminum Matrix Composite Prepared via Mechanical Alloying, Journal of Composites and Compounds 3(7) (2021) 91-98 .

F. Sharifianjazi, A.H. Pakseresht, M. Shahedi Asl, A. Esmaeilkhanian, H. Nargesi khoramabadi, H. Won Jang, M. Shokouhimehr, Hydroxyapatite consolidated by zirconia: applications for dental implant, Journal of Composites and Compounds 2(2) (2020) 26-34 .

L. Bazli, H. Nargesi khoramabadi, A. Modarresi Chahardehi, H. Arsad, B. Malekpouri, M. Asgari Jazi, N. Azizabadi, Factors influencing the failure of dental implants: a systematic review, Journal of Composites and Compounds 2(2) (2020) 18-25 .

K. Zhang, Q. Van Le, Bioactive glass coated zirconia for dental implants: a review, Journal of Composites and Compounds 2(2) (2020) 10-17 .

V. Pal Singh Sidhu, J. Marchi, R. Borges, E. Ahmadi, Surface modification of metallic orthopedic implants for anti-pathogenic characteristics, Journal of Composites and Compounds 4(10) (2022) 47-58.

A. Esmaeilkhanian, F. Sharifianjazi, A. Abouchenari, A. Rouhani, N. Parvin, M. Irani, Synthesis and characterization of natural nano-hydroxyapatite derived from turkey femur-bone waste, Applied biochemistry and biotechnology 189(3) (2019) 919-932.

E. Fidancevska, G. Ruseska, J. Bossert, Y.-M. Lin, A.R. Boccaccini, Fabrication and characterization of porous bioceramic composites based on hydroxyapatite and titania, Materials Chemistry and Physics 103(1) (2007) 95-100 .

J.P. López, Alumina, Zirconia, and Other Non-oxide Inert Bioceramics, Bio?Ceramics with Clinical Applications2014, pp. 153-173.

L. Bazli, M. Siavashi, A. Shiravi, A review of carbon nanotube/TiO2 composite prepared via sol-gel method, Journal of Composites and Compounds 1(1) (2019) 1-9.

S. Punj, J. Singh, K. Singh, Ceramic biomaterials: Properties, state of the art and future prospectives, Ceramics International 47(20) (2021) 28059-28074.

Z. Goudarzi, A. Ijadi, A. Bakhtiari, S. Eskandarinezhad, N. Azizabadi, M. Asgari Jazi, Sr-doped bioactive glasses for biological applications, Journal of Composites and Compounds 2(3) (2020) 105-109.

L.L. Hench, Bioceramics: from concept to clinic, Journal of the american ceramic society 74(7) (1991) 1487-1510.

P. Ducheyne, Q. Qiu, Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function, Biomaterials 20(23-24) (1999) 2287-2303.

F.-H. Lin, C.-J. Liao, K.-S. Chen, J.-S. Sun, C.-P. Lin, Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water, Biomaterials 22(22) (2001) 2981-2992.

A. Moghanian, A. Koohfar, S. Hosseini, S.H. Hosseini, A. Ghorbanoghli, M. Sajjadnejad, M. Raz, M. Elsa, F. Sharifianjazi, Synthesis, characterization and in vitro biological properties of simultaneous co-substituted Ti+4/Li+1 58s bioactive glass, Journal of Non-Crystalline Solids 561 (2021) 120740.

F. Sharifianjazi, A. Esmaeilkhanian, M. Moradi, A. Pakseresht, M.S. Asl, H. Karimi-Maleh, H.W. Jang, M. Shokouhimehr, R.S. Varma, Biocompatibility and mechanical properties of pigeon bone waste extracted natural nano-hydroxyapatite for bone tissue engineering, Materials Science and Engineering: B 264 (2021) 114950.

J.-A. Kim, J. Lim, R. Naren, H.-s. Yun, E.K. Park, Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo, Acta Biomaterialia 44 (2016) 155-167.

J.S. Temenoff, A.G. Mikos, Injectable biodegradable materials for orthopedic tissue engineering, Biomaterials 21(23) (2000) 2405-2412.

F. Driessens, R. Verbeeck, Relation between physico-chemical solubility and biodegradability of calcium phosphates, Implant materials in biofunction, Advances in biomaterials, Amsterdam: Elsevier (1988) 105-111.

Y. Gonda, K. Ioku, Y. Shibata, T. Okuda, G. Kawachi, M. Kamitakahara, H. Murayama, K. Hideshima, S. Kamihira, I. Yonezawa, H. Kurosawa, T. Ikeda, Stimulatory effect of hydrothermally synthesized biodegradable hydroxyapatite granules on osteogenesis and direct association with osteoclasts, Biomaterials 30(26) (2009) 4390-4400.

H. Ghazanfari, S. Hasanizadeh, S. Eskandarinezhad, S. Hassani, M. Sheibani, A. Dordsheikh Torkamani, B. Faki?, Recent progress in materials used towards corrosion protection of Mg and its alloys, Journal of Composites and Compounds 2(5) (2020) 205-214.

P. Kumar, B.S. Dehiya, A. Sindhu, Bioceramics for hard tissue engineering applications: A review, Int. J. Appl. Eng. Res 13(5) (2018) 2744-2752.

R.N. Azadani, M. Sabbagh, H. Salehi, A. Cheshmi, A. Raza, B. Kumari, G. Erabi, Sol-gel: Uncomplicated, routine and affordable synthesis procedure for utilization of composites in drug delivery, Journal of Composites and Compounds 3(6) (2021) 57-70.

A.H. Shahbaz, M. Esmaeilian, R. NasrAzadani, K. Gavanji, The effect of MgF2 addition on the mechanical properties of hydroxyapatite synthesized via powder metallurgy, Journal of Composites and Compounds 1(1) (2019) 16-21.

H. Lee, T.-S. Jang, J. Song, H.-E. Kim, H.-D. Jung, The production of porous hydroxyapatite scaffolds with graded porosity by sequential freeze-casting, Materials 10(4) (2017) 367.

N.L. Davison, F. Barrère-de Groot, D.W. Grijpma, Degradation of biomaterials, Tissue Engineering (2014) 177-215.

N. Owji, N. Mandakhbayar, J.-R. Cha, A.R. Padalhin, Z.K. Erdogan, A. Aldaadaa, T. Shakouri, P. Sawadkar, O. Frost, H.-W. Kim, Inclusion of calcium phosphate does not further improve in vitro and in vivo osteogenesis in a novel, highly biocompatible, mechanically stable and 3D printable polymer, Scientific reports 12(1) (2022) 1-16.

R.Z. LeGeros, Properties of osteoconductive biomaterials: calcium phosphates, Clinical Orthopaedics and Related Research (1976-2007) 395 (2002) 81-98.

R. Pilliar, M. Filiaggi, J. Wells, M. Grynpas, R. Kandel, Porous calcium polyphosphate scaffolds for bone substitute applications—in vitro characterization, Biomaterials 22(9) (2001) 963-972.

D. Kalliecharan, W. Germscheid, R.B. Price, J. Stansbury, D. Labrie, Shrinkage stress kinetics of Bulk Fill resin-based composites at tooth temperature and long time, Dental Materials 32(11) (2016) 1322-1331.

S. Raynaud, E. Champion, J. Lafon, D. Bernache-Assollant, Calcium phosphate apatites with variable Ca/P atomic ratio III. Mechanical properties and degradation in solution of hot pressed ceramics, Biomaterials 23(4) (2002) 1081-1089.

S. Barinov, S. Tumanov, I. Fadeeva, V.Y. Bibikov, Environment effect on the strength of hydroxy-and fluorohydroxyapatite ceramics, Inorganic materials 39(8) (2003) 877-880.

M. Nilsson, E. Fernández, J.A. Planell, I. McCarthy, L. Lidgren, The effect of aging an injectable bone graft substitute in simulated body fluid, Key Engineering Materials, Trans Tech Publ, 2003, pp. 403-406.

M. Azad Alam, M.H. Asoushe, P. Pourhakkak, L. Gritsch, A. Alipour, S. Mohammadi, Preparation of bioactive polymer-based composite by different techniques and application in tissue engineering: A review, Journal of Composites and Compounds 3(8) (2021) 194-205.

R. Tang, G.H. Nancollas, C.A. Orme, Mechanism of dissolution of sparingly soluble electrolytes, Journal of the American Chemical Society 123(23) (2001) 5437-5443.

J.M. de Oliveira Junior, P.G. Montagner, R.C. Carrijo, E.F. Martinez, Physical characterization of biphasic bioceramic materials with different granulation sizes and their influence on bone repair and inflammation in rat calvaria, Scientific Reports 11(1) (2021) 1-10.

C. Gao, S. Peng, P. Feng, C. Shuai, Bone biomaterials and interactions with stem cells, Bone research 5(1) (2017) 1-33.

V. Kartsogiannis, K.W. Ng, Cell lines and primary cell cultures in the study of bone cell biology, Molecular and cellular endocrinology 228(1-2) (2004) 79-102.

J. Lu, M. Descamps, J. Dejou, G. Koubi, P. Hardouin, J. Lemaitre, J.P. Proust, The biodegradation mechanism of calcium phosphate biomaterials in bone, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 63(4) (2002) 408-412.

E. Ooms, J. Wolke, J. Van Der Waerden, J. Jansen, Trabecular bone response to injectable calcium phosphate (Ca?P) cement, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 61(1) (2002) 9-18.

S. Wenisch, J.P. Stahl, U. Horas, C. Heiss, O. Kilian, K. Trinkaus, A. Hild, R. Schnettler, In vivo mechanisms of hydroxyapatite ceramic degradation by osteoclasts: fine structural microscopy, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 67(3) (2003) 713-718.

I.R. Zerbo, A.L. Bronckers, G. De Lange, E.H. Burger, Localisation of osteogenic and osteoclastic cells in porous ?-tricalcium phosphate particles used for human maxillary sinus floor elevation, Biomaterials 26(12) (2005) 1445-1451.

S. Leeuwenburgh, P. Layrolle, F. Barrere, J. De Bruijn, J. Schoonman, C. Van Blitterswijk, K. De Groot, Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro, Journal of Biomedical Materials Research: an Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 56(2) (2001) 208-215.

F.S. Jazi, N. Parvin, M. Rabiei, M. Tahriri, Z.M. Shabestari, A.R. Azadmehr, Effect of the synthesis route on the grain size and morphology of ZnO/Ag nanocomposite, Journal of Ceramic Processing Research 13(5) (2012) 523-526.

N. Abbasi, S. Hamlet, R.M. Love, N.-T. Nguyen, Porous scaffolds for bone regeneration, Journal of science: advanced materials and devices 5(1) (2020) 1-9.

N. Eliaz, N. Metoki, Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications, Materials 10(4) (2017) 334.

K. Jahan, G. Manickam, M. Tabrizian, M. Murshed, In vitro and in vivo investigation of osteogenic properties of self-contained phosphate-releasing injectable purine-crosslinked chitosan-hydroxyapatite constructs, Scientific reports 10(1) (2020) 1-17.

K. Sarkar, V. Kumar, K.B. Devi, D. Ghosh, S.K. Nandi, M. Roy, Anomalous in vitro and in vivo degradation of magnesium phosphate bioceramics: role of zinc addition, ACS Biomaterials Science & Engineering 5(10) (2019) 5097-5106.

S. Ni, J. Chang, In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics, Journal of biomaterials applications 24(2) (2009) 139-158.

A.Z. Alshemary, Y. Muhammed, N.A. Salman, R. Hussain, A. Motameni, R. GÜRBÜZ, M.H.H. Alkaabi, A. Abdolahi, IN VITRO DEGRADATION AND BIOACTIVITY OF ANTIBACTERIAL CHROMIUM DOPED ?-TRICALCIUM PHOSPHATE BIOCERAMICS, Ceramics–Silikáty 66(3) (2022) 347-353.

F. Tavangarian, R. Emadi, Nanostructure effects on the bioactivity of forsterite bioceramic, Materials Letters 65(4) (2011) 740-743.

L. Xie, H. Yu, Y. Deng, W. Yang, L. Liao, Q. Long, Preparation, characterization and in vitro dissolution behavior of porous biphasic ?/?-tricalcium phosphate bioceramics, Materials science and engineering: C 59 (2016) 1007-1015.

Z. Jin, R. Wu, J. Shen, X. Yang, M. Shen, W. Xu, R. Huang, L. Zhang, G. Yang, C. Gao, Nonstoichiometric wollastonite bioceramic scaffolds with core-shell pore struts and adjustable mechanical and biodegradable properties, Journal of the Mechanical Behavior of Biomedical Materials 88 (2018) 140-149.

K.B. Devi, B. Lee, A. Roy, P.N. Kumta, M. Roy, Effect of zinc oxide doping on in vitro degradation of magnesium silicate bioceramics, Materials Letters 207 (2017) 100-103.

M. Razavi, M. Fathi, O. Savabi, L. Tayebi, D. Vashaee, Improvement of in vitro behavior of an Mg alloy using a nanostructured composite bioceramic coating, Journal of Materials Science: Materials in Medicine 29(10) (2018) 1-11.

M. Ulum, A. Arafat, D. Noviana, A. Yusop, A. Nasution, M.A. Kadir, H. Hermawan, In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications, Materials Science and Engineering: C 36 (2014) 336-344.

F. Deng, Z. Bu, H. Hu, X. Huang, Z. Liu, C. Ning, Bioadaptable bone regeneration of Zn-containing silicocarnotite bioceramics with moderate biodegradation and antibacterial activity, Applied Materials Today 27 (2022) 101433.

J. Dong, P. Lin, N. Putra, N. Tümer, M. Leeflang, Z. Huan, L. Fratila-Apachitei, J. Chang, A. Zadpoor, J. Zhou, Extrusion-based additive manufacturing of Mg-Zn/bioceramic composite scaffolds, Acta Biomaterialia (2022).

U. Klammert, A. Ignatius, U. Wolfram, T. Reuther, U. Gbureck, In vivo degradation of low temperature calcium and magnesium phosphate ceramics in a heterotopic model, Acta Biomaterialia 7(9) (2011) 3469-3475.

S. Xu, Q. Wu, B. He, J. Rao, D.H.K. Chow, J. Xu, X. Wang, Y. Sun, C. Ning, K. Dai, Interactive effects of cerium and copper to tune the microstructure of silicocarnotite bioceramics towards enhanced bioactivity and good biosafety, Biomaterials 288 (2022) 121751.

K. Sarkar, M. Rahaman, S. Agarwal, S. Bodhak, S. Halder, S.K. Nandi, M. Roy, Degradability and in vivo biocompatibility of doped magnesium phosphate bioceramic scaffolds, Materials Letters 259 (2020) 126892.

Y.-C. Chen, P.-Y. Hsu, W.-H. Tuan, C.-Y. Chen, C.-J. Wu, P.-L. Lai, Long-term in vitro degradation and in vivo evaluation of resorbable bioceramics, Journal of Materials Science: Materials in Medicine 32(1) (2021) 1-11.

S. Liu, F. Jin, K. Lin, J. Lu, J. Sun, J. Chang, K. Dai, C. Fan, The effect of calcium silicate on in vitro physiochemical properties and in vivo osteogenesis, degradability and bioactivity of porous ?-tricalcium phosphate bioceramics, Biomedical Materials 8(2) (2013) 025008.

S. Wang, Z. Huang, L. Liu, J. Liu, Z. Li, Y. Hao, Design and study of in vivo bone formation characteristics of biodegradable bioceramic, Materials & Design 212 (2021) 110242.

Graphical Abstract

Downloads

Published

2022-09-30

How to Cite

Askari, S., Yazdani, E., Arabuli, L., Goldadi, H., Shahidi Marnani, S. A., & Emami, M. (2022). In-vitro and in-vivo examination for bioceramics degradation. Journal of Composites and Compounds, 4(12), 169–177. https://doi.org/10.52547/jcc.4.3.7

Issue

Section

Review Articles