The rechargeable aluminum-ion battery with different composite cathodes: A review

Authors

  • Leyla Saei Fard Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166416471, Iran
  • Naeimeh Sadat Peighambardoust Koç University Boron and Advanced Materials Applications and Research Center (KUBAM), Sariyer, Istanbul, 34450, Turkey
  • Ho Won Jang Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
  • Alireza Dehghan Department of Research and Development, Applied research center of the geological survey of Iran, Alborz, Iran
  • Niloufar Nehzat Khosh Saligheh Shomal University, Amol, Mazandaran, Iran
  • Marjan Iranpour Department of Agricultural Machinery Mechanics, Univesity of Tehran, Alborz, Iran
  • Mitra Isvand Rajabi Islamic Azad University, Dezful Branch, Dezful, Khuzestan, Iran

DOI:

https://doi.org/10.29252/jcc.2.3.5

Keywords:

Liquid electrolyte, Solid electrolyte, Ionic electrolyte, Aluminum-ion battery, Composite cathodes

Abstract

Digital cameras, laptop computers, cellular phones, as well as many portable electronic devices require batteries for powering. Based on the electrolyte type, electrolytic batteries can be categorized into solid-based, liquid-based, and ionic-based batteries. Aluminum ion batteries (AIBs) have some promising properties such as low cost, high safety, and high specific volumetric capacity. Nevertheless, in order for AIBs to be extensively used, developing novel electrode materials possessing high energy density is required. This is mainly dependent on the cathode materials. However, these cathode materials have some drawbacks such as structural decomposition, low battery capacity, low discharge voltage, and volume expansion resulting from the intercalation of large-sized ions. Therefore, future research might concentrate on the investigation of cheaper electrolyte and novel cathode materials for enhancement of energy density and working voltage. This review focuses on the recent cathodes, particularly, composite cathode materials, including graphite, CuS, V2O5, Li3VO4@C, VS4/rGO, and Ni3S2/graphene.

References

S. Saadi, B. Nazari, Recent developments and applications of nanocomposites in solar cells: a review, Journal of Composites and Compounds 1(1) (2019) 48-58.

J. Shin, Ionic liquids to the rescue Overcoming the ionic conductivity limitations of polymer electrolytes, Electrochemistry Communications 5(12) (2003) 1016-1020.

X. Zhang, S. Wang, J. Tu, G. Zhang, S. Li, D. Tian, S. Jiao, Flower-like Vanadium Suflide/Reduced Graphene Oxide Composite: An Energy Storage Material for Aluminum-Ion Batteries, ChemSusChem 11(4) (2018) 709-715.

T. Leisegang, F. Meutzner, M. Zschornak, W. Munchgesang, R. Schmid, T. Nestler, R.A. Eremin, A.A. Kabanov, V.A. Blatov, D.C. Meyer, The Aluminum-Ion Battery: A Sustainable and Seminal Concept, Front Chem 7 (2019) 268.

A. Kim, Li Intercalation into Carbonaceous Anode Materials for LiAlCl4-3SO2 Electrolyte Based Lithium Ion Battery, Hanyang, 2019.

S. Wang, Z. Yu, J. Tu, J. Wang, D. Tian, Y. Liu, S. Jiao, A novel aluminum-ion battery: Al-AlCl3-EMlm Cl-Ni3S2 (at) graphene, Advanced Energy Materials 6(13) (2016) 1600137.

J. Li, C. Ma, M. Chi, C. Liang, N.J. Dudney, Solid Electrolyte: the Key for High-Voltage Lithium Batteries, Advanced Energy Materials 5(4) (2015).

Y. Ru, S. Zheng, H. Xue, H. Pang, Potassium cobalt hexacyanoferrate nanocubic assemblies for high-performance aqueous aluminum ion batteries, Chemical Engineering Journal 382 (2020) 122853.

K. Zhang, H.W. Jang, Q. Van Le, Production methods of ceramic-reinforced Al-Li matrix composites: A review, Journal of Composites and Compounds 2(3) (2020) 76-84.

I. Tajzad, E. Ghasali, Production methods of CNT-reinforced Al matrix composites: a review, Journal of Composites and Compounds 2(1) (2020) 1-9.

J. Jiang, H. Li, J. Huang, K. Li, J. Zeng, Y. Yang, J. Li, Y. Wang, J. Wang, J. Zhao, Investigation of the Reversible Intercalation/Deintercalation of Al into the Novel Li3VO4 (at) C Microsphere Composite Cathode Material for Aluminum-Ion Batteries, ACS Appl Mater Interfaces 9(34) (2017) 28486-28494.

S. Wang, S. Jiao, J. Wang, H.S. Chen, D. Tian, H. Lei, D.N. Fang, High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode, ACS Nano 11(1) (2017) 469-477.

N.C. Rosero-Navarro, A. Miura, K. Tadanaga, Preparation of lithium ion conductive Li6PS5Cl solid electrolyte from solution for the fabrication of composite cathode of all-solid-state lithium battery, Journal of Sol-Gel Science and Technology 89(1) (2019) 303-309.

L. Larush, V. Borgel, E. Markevich, O. Haik, E. Zinigrad, D. Aurbach, G. Semrau, M. Schmidt, On the thermal behavior of model Li–LixCoO2 systems containing ionic liquids in standard electrolyte solutions, Journal of Power Sources 189(1) (2009) 217-223.

A. Lewandowski, A. Swiderska-Mocek, Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies, Journal of Power Sources 194(2) (2009) 601-609.

Y. Zhang, Y. Zhao, K. Eun Sun, P. Chen, Development in lithium-sulfur secondary batteries, The Open Materials Science Journal 5(1) (2011).

S.S. Zhang, Liquid electrolyte lithium-sulfur battery: fundamental chemistry, problems, and solutions, Journal of Power Sources 231 (2013) 153-162.

R. Rauh, K. Abraham, G. Pearson, J. Surprenant, S. Brummer, A lithium-dissolved sulfur battery with an organic electrolyte, Journal of the Electrochemical Society 126(4) (1979) 523.

E. Peled, Y. Sternberg, A. Gorenshtein, Y. Lavi, Lithium-sulfur battery: evaluation of dioxolane-based electrolytes, Journal of the Electrochemical Society 136(6) (1989) 1621.

S.S. Zhang, J.A. Read, A new direction for the performance improvement of rechargeable lithium-sulfur batteries, Journal of Power Sources 200 (2012) 77-82.

Z. Ye, Z. Cao, M.O. Lam Chee, P. Dong, P.M. Ajayan, J. Shen, M. Ye, Advances in Zn-ion batteries via regulating liquid electrolyte, Energy Storage Materials 32 (2020) 290-305.

S. Sarwar, M.-s. Lee, S. Park, T.T. Dao, A. Ullah, S. Hong, C.-H. Han, Transformation of a liquid electrolyte to a gel inside dye sensitized solar cells for better stability and performance, Thin Solid Films 704 (2020) 138024.

S.S. Zhang, New insight into liquid electrolyte of rechargeable lithium-sulfur battery, Electrochimica Acta 97 (2013) 226-230.

H. Yamin, A. Gorenshtein, J. Penciner, Y. Sternberg, E. Peled, Lithium sulfur battery: oxi-dation-reduction mechanisms of polysulfides in THF solutions, Journal of the Electrochemical Society 135(5) (1988) 1045.

D. Marmorstein, T. Yu, K. Striebel, F. McLarnon, J. Hou, E. Cairns, Electrochemical per-formance of lithium-sulfur cells with three different polymer electrolytes, Journal of Power Sources 89(2) (2000) 219-226.

H.-S. Ryu, H.-J. Ahn, K.-W. Kim, J.-H. Ahn, J.-Y. Lee, Discharge process of Li-PVdF-S cells at room temperature, Journal of Power Sources 153(2) (2006) 360-364.

J. Shin, S. Jung, K. Kim, H. Ahn, J. Ahn, Preparation and characterization of plasticized polymer electrolytes based on the PVdF-HFP copolymer for lithium-sulfur battery, Journal of Materials Science: Materials in Electronics 13(12) (2002) 727-733.

B.H. Jeon, J.H. Yeon, I.J. Chung, Preparation and electrical properties of lithium–sulfur-composite polymer batteries, Journal of materials processing technology 143 (2003) 93-97.

B.H. Jeon, J.H. Yeon, K.M. Kim, I.J. Chung, Preparation and electrochemical properties of lithium–sulfur polymer batteries, Journal of power sources 109(1) (2002) 89-97.

J.-W. Choi, J.-K. Kim, G. Cheruvally, J.-H. Ahn, H.-J. Ahn, K.-W. Kim, Rechargeable lith-ium-sulfur battery with suitable mixed liquid electrolytes, Electrochimica Acta 52(5) (2007) 2075-2082.

E. Peled, A. Gorenshtein, M. Segal, Y. Sternberg, Rechargeable lithium sulfur battery, Journal of Power Sources 26(3-4) (1989) 269-271.

H. Ryu, H. Ahn, K. Kim, J. Ahn, J.-Y. Lee, E. Cairns, Self-discharge of lithium–sulfur cells using stainless-steel current-collectors, Journal of Power Sources 140(2) (2005) 365-369.

D.-R. Chang, S.-H. Lee, S.-W. Kim, H.-T. Kim, Binary electrolyte based on tetra (ethylene glycol) dimethyl ether and 1, 3-dioxolane for lithium–sulfur battery, Journal of Power Sources 112(2) (2002) 452-460.

S.-E. Cheon, K.-S. Ko, J.-H. Cho, S.-W. Kim, E.-Y. Chin, H.-T. Kim, Rechargeable lithium sulfur battery: I. Structural change of sulfur cathode during discharge and charge, Journal of the Electrochemical Society 150(6) (2003) A796.

H.-S. Ryu, H.-J. Ahn, K.-W. Kim, J.-H. Ahn, K.-K. Cho, T.-H. Nam, J.-U. Kim, G.-B. Cho, Discharge behavior of lithium-sulfur cell with TEGDME based electrolyte at low temperature, Journal of Power Sources 163(1) (2006) 201-206.

J. Wang, Y. Wang, X. He, J. Ren, C. Jiang, C. Wan, Electrochemical characteristics of sul-fur composite cathode materials in rechargeable lithium batteries, Journal of power sources 138(1-2) (2004) 271-273.

J. Wang, L. Liu, Z. Ling, J. Yang, C. Wan, C. Jiang, Polymer lithium cells with sulfur composites as cathode materials, Electrochimica Acta 48(13) (2003) 1861-1867.

H. Yang, F. Wu, Y. Bai, C. Wu, Toward better electrode-electrolyte interfaces in the ionic-liquid-based rechargeable aluminum batteries, Journal of Energy Chemistry 45 (2020) 98-102.

X. Wang, Z. Shang, A. Yang, Q. Zhang, F. Cheng, D. Jia, J. Chen, Combining quinone cathode and ionic liquid electrolyte for organic sodium-ion batteries, Chem 5(2) (2019) 364-375.

X. Ke, Y. Wang, L. Dai, C. Yuan, Cell failures of all-solid-state lithium metal batteries with inorganic solid electrolytes: Lithium dendrites, Energy Storage Materials (2020).

X. Wang, J. Sun, C. Feng, X. Wang, M. Xu, J. Sun, N. Zhang, J. Ma, Q. Wang, C. Zong, G. Cui, Lithium bis(oxalate)borate crosslinked polymer electrolytes for high-performance lithium batteries, Journal of Energy Chemistry 55 (2021) 228-235.

X. Zhang, W. Zhou, M. Zhang, Z. Yang, W. Huang, Superior performance for lithium-ion battery with organic cathode and ionic liquid electrolyte, Journal of Energy Chemistry 52 (2021) 28-32.

Z. Zhang, J. Zhang, H. Jia, L. Peng, T. An, J. Xie, Enhancing ionic conductivity of solid electrolyte by lithium substitution in halogenated Li-Argyrodite, Journal of Power Sources 450 (2020) 227601.

M.A.K.L. Dissanayake, T. Liyanage, T. Jaseetharan, G.K.R. Senadeera, B.S. Dassanayake, Effect of PbS quantum dot-doped polysulfide nanofiber gel polymer electrolyte on efficiency enhancement in CdS quantum dot-sensitized TiO2 solar cells, Electrochimica Acta 347 (2020) 136311.

A. Gupta, A. Bhargav, J.-P. Jones, R.V. Bugga, A. Manthiram, Influence of Lithium Poly-sulfide Clustering on the Kinetics of Electrochemical Conversion in Lithium–Sulfur Batteries, Chemistry of Materials 32(5) (2020) 2070-2077.

Z. Liu, V.S. Manikandan, A. Chen, Recent advances in nanomaterial-based electrochemi-cal sensing of nitric oxide and nitrite for biomedical and food research, Current Opinion in Electrochemistry 16 (2019) 127-133.

S.-e. Sheng, L. Sheng, L. Wang, N. Piao, X. He, Thickness variation of lithium metal an-ode with cycling, Journal of Power Sources 476 (2020) 228749.

L. Kong, L. Yin, F. Xu, J. Bian, H. Yuan, Z. Lu, Y. Zhao, Electrolyte solvation chemistry for lithium–sulfur batteries with electrolyte-lean conditions, Journal of Energy Chemistry 55 (2021) 80-91.

R. Weber, M. Genovese, A. Louli, S. Hames, C. Martin, I.G. Hill, J. Dahn, Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte, Nature Energy 4(8) (2019) 683-689.

H. Xia, C. Li, H. Chen, Green preparation of CuI particles in dielectric barrier discharge for colorimetric determination of trace mercury in comparison with atomic fluorescence spec-trometric determination, Microchemical Journal 146 (2019) 1169-1172.

H. Zhuo, X. Wang, A. Tang, Z. Liu, S. Gamboa, P. Sebastian, The preparation of NaV1-xCrxPO4F cathode materials for sodium-ion battery, Journal of power sources 160(1) (2006) 698-703.

R. Alcantara, J.M. Jimenez-Mateos, P. Lavela, J.L. Tirado, Carbon black: a promising electrode material for sodium-ion batteries, Electrochemistry Communications 3(11) (2001) 639-642.

S. Komaba, C. Takei, T. Nakayama, A. Ogata, N. Yabuuchi, Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2, Electrochemistry Communications 12(3) (2010) 355-358.

P. Moreau, D. Guyomard, J. Gaubicher, F. Boucher, Structure and stability of sodium in-tercalated phases in olivine FePO4, Chemistry of Materials 22(14) (2010) 4126-4128.

K.O. Oyedotun, T.M. Masikhwa, S. Lindberg, A. Matic, P. Johansson, N. Manyala, Com-parison of ionic liquid electrolyte to aqueous electrolytes on carbon nanofibres supercapacitor electrode derived from oxygen-functionalized graphene, Chemical Engineering Journal 375 (2019) 121906.

H. Ryu, T. Kim, K. Kim, J.-H. Ahn, T. Nam, G. Wang, H.-J. Ahn, Discharge reaction mechanism of room-temperature sodium–sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte, Journal of Power Sources 196(11) (2011) 5186-5190.

R. Pathak, K. Chen, A. Gurung, K.M. Reza, B. Bahrami, J. Pokharel, A. Baniya, W. He, F. Wu, Y. Zhou, Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposi-tion, Nature communications 11(1) (2020) 1-10.

Y. Liu, J. Liu, Q. Sun, D. Wang, K.R. Adair, J. Liang, C. Zhang, L. Zhang, S. Lu, H. Huang, Insight into the microstructure and ionic conductivity of cold sintered NASICON solid electro-lyte for solid-state batteries, ACS applied materials & interfaces 11(31) (2019) 27890-27896.

Z. Chang, Y. Qiao, H. Deng, H. Yang, P. He, H. Zhou, A Liquid Electrolyte with De-Solvated Lithium Ions for Lithium-Metal Battery, Joule 4(8) (2020) 1776-1789.

Y. Deng, X. Zhu, N. Chen, C. Feng, H. Wang, P. Kuang, W. Hu, Review on electrochemi-cal system for landfill leachate treatment: Performance, mechanism, application, shortcoming, and improvement scheme, Science of The Total Environment 745 (2020) 140768.

A. Sakuda, A. Hayashi, M. Tatsumisago, Sulfide solid electrolyte with favorable mechani-cal property for all-solid-state lithium battery, Sci Rep 3 (2013) 2261.

A.L. Santhosha, L. Medenbach, T. Palaniselvam, P. Adelhelm, Sodium-Storage Behavior of Exfoliated MoS2 as an Electrode Material for Solid-State Batteries with Na3PS4 as the Solid Electrolyte, The Journal of Physical Chemistry C 124(19) (2020) 10298-10305.

T. Le Varlet, O. Schmidt, A. Gambhir, S. Few, I. Staffell, Comparative life cycle assess-ment of lithium-ion battery chemistries for residential storage, Journal of Energy Storage 28 (2020) 101230.

R. Yazami, Y.F. Reynier, Mechanism of self-discharge in graphite–lithium anode, Electro-chimica Acta 47(8) (2002) 1217-1223.

P. Novak, J.-C. Panitz, F. Joho, M. Lanz, R. Imhof, M. Coluccia, Advanced in situ methods for the characterization of practical electrodes in lithium-ion batteries, Journal of power sources 90(1) (2000) 52-58.

N. Ogihara, Y. Igarashi, A. Kamakura, K. Naoi, Y. Kusachi, K. Utsugi, Disordered carbon negative electrode for electrochemical capacitors and high-rate batteries, Electrochimica acta 52(4) (2006) 1713-1720.

F. Ding, Y. Liu, X. Hu, 1,3-dioxolane pretreatment to improve the interfacial characteris-tics of a lithium anode, Rare Metals 25(4) (2006) 297-302.

P. Verma, P. Maire, P. Novak, A review of the features and analyses of the solid electro-lyte interphase in Li-ion batteries, Electrochimica Acta 55(22) (2010) 6332-6341.

K.-H. Lee, D.B. Ahn, J.-H. Kim, J.-W. Lee, S.-Y. Lee, Printed Built-In Power Sources, Matter 2(2) (2020) 345-359.

D.J. Suh, C. Kwak, J.-H. Kim, S.M. Kwon, T.-J. Park, Removal of carbon monoxide from hydrogen-rich fuels by selective low-temperature oxidation over base metal added platinum catalysts, Journal of Power Sources 142(1) (2005) 70-74.

A. Sakuda, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago, LiCoO2 electrode particles coated with Li2S–P2S5 solid electrolyte for all-solid-state batteries, Electrochemical and Solid State Letters 13(6) (2010) A73.

X. Wang, Y. Qian, L. Wang, H. Yang, H. Li, Y. Zhao, T. Liu, Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithi-um–sulfur batteries, Advanced Functional Materials 29(39) (2019) 1902929.

X. Judez, M. Martinez-Ibanez, A. Santiago, M. Armand, H. Zhang, C. Li, Quasi-solid-state electrolytes for lithium sulfur batteries: Advances and perspectives, Journal of Power Sources 438 (2019) 226985.

S. Wang, K.V. Kravchyk, A.N. Filippin, R. Widmer, A.N. Tiwari, S. Buecheler, M.I. Bod-narchuk, M.V. Kovalenko, Overcoming the High-Voltage Limitations of Li-Ion Batteries Using a Titanium Nitride Current Collector, ACS Applied Energy Materials 2(2) (2019) 974-978.

D. Hayashi, K. Suzuki, S. Hori, Y. Yamada, M. Hirayama, R. Kanno, Synthesis of Li10GeP2S12-type lithium superionic conductors under Ar gas flow, Journal of Power Sources 473 (2020) 228524.

L.X. Yuan, J.K. Feng, X.P. Ai, Y.L. Cao, S.L. Chen, H.X. Yang, Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte, Electrochemistry Com-munications 8(4) (2006) 610-614.

M. Batteries, CA Vincent and B, Scrosati Wiley, New York (1997) 198-242.

M. Diaw, A. Chagnes, B. Carre, P. Willmann, D. Lemordant, Mixed ionic liquid as electro-lyte for lithium batteries, Journal of Power Sources 146(1-2) (2005) 682-684.

C. Niu, J. Liu, G. Chen, C. Liu, T. Qian, J. Zhang, B. Cao, W. Shang, Y. Chen, J. Han, Ani-on-regulated solid polymer electrolyte enhances the stable deposition of lithium ion for lithium metal batteries, Journal of Power Sources 417 (2019) 70-75.

J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific2011, pp. 171-179.

ElectroChem integrates fuel cell technology in India, South Asia, Fuel Cells Bulletin 2007(8) (2007) 7.

G. Angajala, R. Subashini, V. Aruna, Microwave assisted amberlite-IRA-402 (OH) ion ex-change resin catalyzed synthesis of new benzoxazole scaffolds derived from antiinflammatory drugs aceclofenac and mefenamic acid as potential therapeutic agents for inflammation, Jour-nal of Molecular Structure 1200 (2020) 127092.

L. Auzel, Y. Ali, C. Monini, J.M. Létang, E. Testa, M. Beuve, L. Maigne, 35 Simulation of micro-nanodosimetry spectra and free radicals with Geant4-DNA, LQD, PHYCHEML, CHEM for ion beams, Physica Medica 68 (2019) 21-22.

P. Vikas, I. Sudhakar, Dilkush, G. MohanaRao, B. Srinivas, Aging behaviour of hot de-formed AA7075 aluminium alloy, Materials Today: Proceedings (2020).

M. Alizadeh, M. Paydar, F.S. Jazi, Structural evaluation and mechanical properties of nanostructured Al-B4C composite fabricated by ARB process, Composites Part B: Engineering 44(1) (2013) 339-343.

E.H. Jazi, R. Esalmi-Farsani, G. Borhani, F.S. Jazi, Synthesis and Characterization of In Situ Al-Al13Fe4-Al2O3-TiB2 Nanocomposite Powder by Mechanical Alloying and Subsequent Heat Treatment, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chem-istry 44(2) (2014) 177-184.

K. Parveen, U. Rafique, M. Javed Akhtar, M. Ashokkumar, Sonochemical synthesis of al-uminium and aluminium hybrids for remediation of toxic metals, Ultrasonics Sonochemistry 70 (2021) 105299.

H. Dohle, J. Mergel, D. Stolten, Heat and power management of a direct-methanol-fuel-cell (DMFC) system, Journal of Power Sources 111(2) (2002) 268-282.

M. Tamski, J.P. Ansermet, C. Roussel, Stabilization of p-GaAs electrode surfaces in or-ganic solvent by bi-phenyl rings for spin dependent electron transfer studies, Journal of Photo-chemistry and Photobiology A: Chemistry (2020) 112853.

A. Fernandez-Guillamon, E. Gomez-Lazaro, E. Muljadi, Á. Molina-Garcia, Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time, Renewable and Sustainable Energy Reviews 115 (2019) 109369.

N.R. Avery, K.J. Black, Kinetic analysis of capacity fade in lithium-coke half-cells, Jour-nal of Power Sources 68(2) (1997) 191-194.

K.G.Y. Beaudelaire, B. Zhuang, J.T. Aladejana, D. Li, X. Hou, Y. Xie, Influence of Meso-porous Inorganic Al–B–P Amphiprotic Surfactant Material Resistances of Wood against Brown and White-Rot Fungi (Part 1), Coatings 10(2) (2020) 108.

S. Abedini, N. Parvin, P. Ashtari, F. Jazi, Microstructure, strength and CO2 separation characteristics of a-alumina supported y-alumina thin film membrane, Advances in Applied Ceramics 112(1) (2013) 17-22.

H. Sun, W. Wang, Z. Yu, Y. Yuan, S. Wang, S. Jiao, A new aluminium-ion battery with high voltage, high safety and low cost, Chemical Communications 51(59) (2015) 11892-11895.

N.S. Hudak, Chloroaluminate-doped conducting polymers as positive electrodes in re-chargeable aluminum batteries, The Journal of Physical Chemistry C 118(10) (2014) 5203-5215.

J.V. Rani, V. Kanakaiah, T. Dadmal, M.S. Rao, S. Bhavanarushi, Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum–ion battery, Journal of The Electrochemical Society 160(10) (2013) A1781.

S. Liu, J. Hu, N. Yan, G. Pan, G. Li, X. Gao, Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries, Energy & Environmental Sci-ence 5(12) (2012) 9743-9746.

L. Bazli, M. Siavashi, A. Shiravi, A Review of Carbon nanotube-TiO2 Composite prepared via Sol-Gel method, Journal of Composites and Compounds 1(1) (2019) 1-12.

N. Jayaprakash, S. Das, L. Archer, The rechargeable aluminum-ion battery, Chemical Communications 47(47) (2011) 12610-12612.

S. Liu, G. Pan, G. Li, X. Gao, Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries, Journal of Materials Chemistry A 3(3) (2015) 959-962.

L.D. Reed, E. Menke, The roles of V2O5 and stainless steel in rechargeable Al–ion batter-ies, Journal of the Electrochemical Society 160(6) (2013) A915.

W. Wang, B. Jiang, W. Xiong, H. Sun, Z. Lin, L. Hu, J. Tu, J. Hou, H. Zhu, S. Jiao, A new cathode material for super-valent battery based on aluminium ion intercalation and deintercala-tion, Scientific reports 3(1) (2013) 1-6.

S. Wang, Z. Yu, J. Tu, J. Wang, D. Tian, Y. Liu, S. Jiao, A Novel Aluminum-Ion Battery: Al-AlCl3-[EMIm]Cl-Ni3S2@Graphene, Advanced Energy Materials 6(13) (2016).

Y. Liu, Q. Sun, W. Li, K.R. Adair, J. Li, X. Sun, A comprehensive review on recent pro-gress in aluminum–air batteries, Green Energy & Environment 2(3) (2017) 246-277.

Q. Li, N.J. Bjerrum, Aluminum as anode for energy storage and conversion: a review, Journal of Power Sources 110(1) (2002) 1-10.

R.N. Mutlu, I. Kucukkara, A.M. Gizir, Hydrogen generation by electrolysis under subcrit-ical water condition and the effect of aluminium anode, International Journal of Hydrogen En-ergy 45(23) (2020) 12641-12652.

B. Craig, T. Schoetz, A. Cruden, C. Ponce de Leon, Review of current progress in non-aqueous aluminium batteries, Renewable and Sustainable Energy Reviews 133 (2020) 110100.

A. Holland, R. Mckerracher, A. Cruden, R. Wills, An aluminium battery operating with an aqueous electrolyte, Journal of Applied Electrochemistry 48(3) (2018) 243-250.

J. Li, J. Qiao, K. Lian, Hydroxide ion conducting polymer electrolytes and their applica-tions in solid supercapacitors: a review, Energy Storage Materials 24 (2020) 6-21.

K.M. Barcelos, K.S.G.C. Oliveira, L.A.M. Ruotolo, Insights on the role of interparticle porosity and electrode thickness on capacitive deionization performance for desalination, De-salination 492 (2020) 114594.

K.L. Ng, T. Dong, J. Anawati, G. Azimi, High-Performance Aluminum Ion Battery Using Cost-Effective AlCl3-Trimethylamine Hydrochloride Ionic Liquid Electrolyte, Advanced Sus-tainable Systems (2020) 2000074.

L. Wei, J. Tao, Y. Yang, X. Fan, X. Ran, J. Li, Y. Lin, Z. Huang, Surface sulfidization of spinel LiNi0.5Mn1.5O4 cathode material for enhanced electrochemical performance in lithium-ion batteries, Chemical Engineering Journal 384 (2020) 123268.

J. Zhong, Z. Yang, Y. Yu, Y. Liu, J. Li, F. Kang, Surface substitution of polyanion to im-prove structure stability and electrochemical properties of lithium-rich layered cathode oxides, Applied Surface Science 512 (2020) 145741.

Y.-C. Yin, Q. Wang, J.-T. Yang, F. Li, G. Zhang, C.-H. Jiang, H.-S. Mo, J.-S. Yao, K.-H. Wang, F. Zhou, Metal chloride perovskite thin film based interfacial layer for shielding lithium metal from liquid electrolyte, Nature communications 11(1) (2020) 1-9.

J. Schnell, T. Gunther, T. Knoche, C. Vieider, L. Köhler, A. Just, M. Keller, S. Passerini, G. Reinhart, All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production, Journal of Power Sources 382 (2018) 160-175.

J. Wei, W. Chen, D. Chen, K. Yang, An amorphous carbon-graphite composite cathode for long cycle life rechargeable aluminum ion batteries, Journal of Materials Science & Tech-nology 34(6) (2018) 983-989.

K. Zhao, X. Shi, Y. Zhao, H. Wei, Q. Sun, T. Huang, X. Zhang, Y. Wang, Preparation and immunological effectiveness of a swine influenza DNA vaccine encapsulated in chitosan nano-particles, Vaccine 29(47) (2011) 8549-8556.

J. Shin, K. Kim, H. Ahn, J. Ahn, Electrochemical properties and interfacial stability of (PEO) 10LiCF3SO3-TinO2n-1 composite polymer electrolytes for lithium-sulfur battery, Mate-rials Science and Engineering: B 95(2) (2002) 148-156.

D.C. Kim, H.J. Shim, W. Lee, J.H. Koo, D.H. Kim, Material-Based Approaches for the Fabrication of Stretchable Electronics, Advanced Materials 32(15) (2020) 1902743.

Y.M. Lee, N.-S. Choi, J.H. Park, J.K. Park, Electrochemical performance of lithium-sulfur batteries with protected Li anodes, Journal of Power Sources 119 (2003) 964-972.

S. Fang, D. Bresser, S. Passerini, Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium-and Sodium-Ion Batteries, Advanced Energy Materials 10(1) (2020) 1902485.

A. Rafique, M.A. Ahmad, I. Shakir, A. Ali, G. Abbas, M.S. Javed, M.A. Khan, R. Raza, Multioxide phase-based nanocomposite electrolyte (M (at)SDC where M= Zn2+-Ba2+-La3+-Zr2+-Al3+) materials, Ceramics International 46(5) (2020) 6882-6888.

W. Guan, L. Wang, H. Lei, J. Tu, S. Jiao, Sb2Se3 nanorods with N-doped reduced gra-phene oxide hybrids as high-capacity positive electrode materials for rechargeable aluminum batteries, Nanoscale 11(35) (2019) 16437-16444.

Y. Zhang, B. Zhang, J. Li, J. Liu, X. Huo, F. Kang, SnSe nano-particles as advanced posi-tive electrode materials for rechargeable aluminum-ion batteries, Chemical Engineering Journal 403 (2021) 126377.

K. Subramanyan, Y.-S. Lee, V. Aravindan, Impact of carbonate-based electrolytes on the electrochemical activity of carbon-coated Na3V2(PO4)2F3 cathode in full-cell assembly with hard carbon anode, Journal of Colloid and Interface Science 582 (2021) 51-59.

X. Ke, Y. Wang, G. Ren, C. Yuan, Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries, Energy Storage Materials 26 (2020) 313-324.

Q. Zhao, F.K. Butt, Z. Guo, L. Wang, Y. Zhu, X. Xu, X. Ma, C. Cao, High-voltage P2-type manganese oxide cathode induced by titanium gradient modification for sodium ion batteries, Chemical Engineering Journal 403 (2021) 126308.

J. Jiang, H. Li, J. Huang, K. Li, J. Zeng, Y. Yang, J. Li, Y. Wang, J. Wang, J. Zhao, Inves-tigation of the reversible intercalation-deintercalation of Al into the novel Li3VO4@ C micro-sphere composite cathode material for aluminum-ion batteries, ACS applied materials & inter-faces 9(34) (2017) 28486-28494.

S. Wang, S. Jiao, J. Wang, H.-S. Chen, D. Tian, H. Lei, D.-N. Fang, High-performance aluminum-ion battery with CuS@ C microsphere composite cathode, ACS nano 11(1) (2017) 469-477.

Y.-Q. Shen, F.-L. Zeng, X.-Y. Zhou, A.-b. Wang, W.-k. Wang, N.-Y. Yuan, J.-N. Ding, A novel permselective organo-polysulfides-PVDF gel polymer electrolyte enables stable lithium anode for lithium–sulfur batteries, Journal of Energy Chemistry 48 (2020) 267-276.

D.-R. Chang, S.-H. Lee, S.-W. Kim, H.-T. Kim, Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium–sulfur battery, Journal of Power Sources 112(2) (2002) 452-460.

J. Zhou, X. Zhou, Y. Sun, X. Shen, T. Qian, C. Yan, Insight into the reaction mechanism of sulfur chains adjustable polymer cathode for high-loading lithium-organosulfur batteries, Journal of Energy Chemistry (2020).

D.K. Rajak, D.D. Pagar, R. Kumar, C.I. Pruncu, Recent progress of reinforcement materi-als: A comprehensive overview of composite materials, Journal of Materials Research and Technology 8(6) (2019) 6354-6374.

Article DOR: 20.1001.1.26765837.2020.2.4.5.7

Graphical Abstract

Downloads

Published

2020-09-30

How to Cite

Saei Fard, L., Peighambardoust, N. S., Won Jang, H., Dehghan, A. ., Nehzat Khosh Saligheh, N. ., Iranpour, M., & Isvand Rajabi, M. (2020). The rechargeable aluminum-ion battery with different composite cathodes: A review. Journal of Composites and Compounds, 2(4), 138–146. https://doi.org/10.29252/jcc.2.3.5

Issue

Section

Review Articles