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1. Introduction

Water pollution has remained one of the leading global environ-
mental challenges, following the discharge of toxic substances from 
various anthropogenic activities [1]. Among the toxic substances being 
discharged, a group of contaminants, including pharmaceuticals and 
personal care products (PPCPs), contrast media, plasticizers, nanoma-
terials, flame retardants, surfactants, food additives, wood preservatives, 
pesticides, hormones etc., have been recognized as significant water pol-
lutants and are termed as emerging contaminants (ECs). 

As a class of ECs, PPCPs are also components with a high concen-
tration in wastewater, amongst which antibiotics have received signif-
icant attention due to their impact on the microbial community [2, 3]. 
Among the antibiotics, fluoroquinolones, including ofloxacin (OFL), are 

frequently detected in wastewaters and surface waters [4, 5]. It is also 
reported that the techniques currently employed by most wastewater 
treatment plants (WWTPs) have limited capacity for the thorough elim-
ination of PPCPs, including OFL from wastewater [6]. 

Ofloxacin (Table 1) is a second-generation fluoroquinolone anti-
biotic with the chemical formula of C18H20FN3O4 and chemical name 
9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazynyl)-7-oxo-7H-
pyrido-[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid [7, 8]. It was pat-
ented in 1980 and subsequently approved for medical use in 1985 [9, 
10]. Currently, OFL is frequently prescribed for the treatment of bron-
chitis, infectious diarrhoea, pneumonia, chlamydia, pelvic inflammatory 
disease, eye infections, digestive infections, ear infections, gonorrhoea, 
respiratory tract infections, urinary tract infections, gastrointestinal in-
fections, and skin infections [11-13].
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A B S T R A C T A R T I C L E  I N F O R M A T I O N

Among the commonly used advanced oxidation processes (AOPs) commonly employed in wastewater remedia-
tion, photocatalytic remediation has remained prominent and promising. This is because the process is effective 
in degrading and even mineralizing numerous organic pollutants including ofloxacin. In view of that, various cat-
egories photocatalysts such as titanium-based, zinc-based, bismuth-based, silver-based, and others have been and 
are still continuously tested by various researchers in remediating wastewater contaminated by pollutants such as 
ofloxacin. This short review focuses on reviewing some publications, especially those reported in the last decade 
involving photocatalytic degradation of ofloxacin in aqueous media.
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However, due to its partial metabolism in the body after ingestion, 
biological resistance, and the large volume of pharmaceutical wastewa-
ter which is being released untreated, studies have reported the detection 
of OFL with different concentrations in hospital wastewater (25,000 – 
35,000 ng/L), municipal wastewater treatment plants (53 – 1800 ng/L) 
and surface water (10 – 535 ng/L), with a residence time of about 10.6 
days [14-16]. 

Nowadays, the well-known methods commonly employed to remove 
persistent organic contaminants, including OFL, are the Advanced Oxi-
dation Processes (AOPs) of which photocatalytic degradation is promi-
nent. These processes involve generating highly reactive and non-selec-
tive free radical species, which can destroy many organic pollutants. The 
AOPs are currently categorized as environmentally friendly processes 
since they neither result in secondary pollution nor the generation of 
excessive hazardous sludge [17-19]. In this regard, the present work re-
viewed variety of photocatalysts used by various researchers in treating 
wastewater contaminated by OFL.

2. Exposure effects of OFL on environment and living 
organisms.

Residual OFL pose a serious threat to both the ecological environ-
ment and the human health [20]. For instance, the presence of OFL 
in water results in high colour with unpleasant odours [10, 21]. It can 
results in acute toxicity (when presents in mg/L) and chronic toxicity 
(when presents in µg/L) to aquatic organisms [22]. The presence of OFL 
may also lead to microbial resistance among pathogens/generation of 
superbugs or the death of microorganisms effective in wastewater re-
mediation [14, 21, 23]. For humans, low concentrations of OFL could 
be enriched into the human body through the food chain [23]. The de-
velopment of antibiotic resistant bacteria could be a potential harm for 
people’s ability to defeat those bacterial strains [24, 25]. After long-term 
exposure, OFL may also pose considerable health risk leading to diz-
ziness, abdominal pain and numbness of limbs [26]. Thus, identifying 
the proper processes for the thorough and complete elimination of OFL 
from wastewater is essential.

3. Mechanism of photocatalytic degradation

The degradation of pollutants via semiconductor photocatalysis is 
initiated through illumination of the material (e.g TiO2, ZnO, BiOBr 
etc.) with light of sufficient wavelength. This leads to the migration of 
electrons from valence band (VB) to conduction band (CB), producing 
electron-hole pairs. However, if the challenge of charge pairs recom-
bination is successfully overcomed, the holes (h+) at the valence band 
(VB), depending on their oxidizing power could degrade the pollutants 
directly or oxidizes water (H2O) to generate hydroxyl radicals (HO•) for 
subsequent degradation of the pollutant. The electrons at the conduc-
tion band (CB) convert oxygen (O2) to superoxide radical anions (•O2

-), 
which also degrade pollutants. The schematic illustration of the process 
is shown in Figure 1. However, it should be mentioned that the degrada-
tion pathway of organic pollutants including OFL is very subjective, and 
the pathway varies greatly from study to study.       

Figure 1: A schematic illustration of photocatalytic degradation pro-
cess in a semiconductor material.

4. Performance assessment of photocatalysts in OFL 
degradation

Over the years, various researchers have made consistent efforts to 
eradicate pollutants including OFL from wastewater via photocatalytic 
degradation process. Among the materials reported in the process are 
the TiO2-based photocatalysts, ZnO-based photocatalysts, Bi-based pho-
tocatalysts are prominent. Although the photocatalysts are sometimes 
being augmented using strategies such as doping and formation of het-

Fig. 1. A schematic illustration of photocatalytic degradation process in a semi-
conductor material.

Table 1.
Molecular structure and some physicochemical properties of OFL

Property Reference

Chemical formula C18H20FN3O4 [54]

CAS number 82419-36-1 [55]

Therapeutic group Antibiotic [56]

Chemical structure [57]

Molecular weight (g/mol) 361.4 [58]

Color White [59]

Melting point 270 – 273 ºC [56]

Solubility in water at 25 ºC (mg/
mL)

60 (pH = 2 – 5); 4 (pH = 
7); 303 (pH = 9.8)

[60]

Partition coefficient -0.39 [55]

Dissociation constant 6.10/8.28 [55]

Octanol/water partition coefficient 
log ko/w

0.41 (pH 7); 0.33 (pH 7.2); 
0.28 (pH 7.3) 

[56]

Isoelectric constants pKa1 = 5.97; pKa2 = 9.28 [61]

Vapour pressure (mm Hg) 1.55E-0.13 [56]

Henry constant at 25 ºC (atm m-3 
mole-1)

4.98E-0.20 [56]

Pharmacokinetic parameters Bioavailability (%) = 
70-90

Time of half-life (h) = 
5-7.4

Excretion in urine (%) 
= 80

[56]
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Table 2.
List of various photocatalysts and their efficiencies in degrading OFL.

S/N Catalyst
Dosage 
(g/L)

COFL 
(mg/L)/ VOFL (mL)

pH Light source Kinetics model
Rate con-

stant 
Time 
(min)

Efficiency (%) Reference

Titanium-based photocatalysts

1 TiO2 0.5 25/- 7 Solar radiation
 (70.3 Klux)

- - 120 32.5 [41]

2 Degussa TiO2 1.5 25/- 3 UV 36 W (365 nm) Pseudo 1st order 0.0036 min-1 360 72 [33]

3 Degussa TiO2 1.5 25/- 4 UV 36 W (365 nm) - - 360 ̴ 62 [33]

4 Degussa TiO2 1.5 25/- 5 UV 36 W (365 nm) - - 360 ̴ 65 [33]

5 Degussa TiO2 1.5 25/- 6 UV 36 W (365 nm) - - 360 ̴ 58 [33]

6 Degussa TiO2 1.5 25/- 7 UV 36 W (365 nm) - - 360 ̴ 55 [33]

7 Degussa TiO2 1.5 25/- 8 UV 36 W (365 nm) - - 360 ̴ 45 [33]

8 Degussa TiO2 1.5 25/- 9 UV 36 W (365 nm) - - 360 ̴ 39 [33]

9 Degussa TiO2 1.5 25/- 10 UV 36 W (365 nm) - - 360 ̴ 37 [33]

10 Degussa TiO2 0.5 25/- 6 UV 36 W (365 nm) - - 360 ̴ 50 [33]

11 Degussa TiO2 1 25/- 6 UV 36 W (365 nm) - - 360 ̴ 56 [33]

12 Degussa TiO2 1.5 25/- 6 UV 36 W (365 nm) - - 360 72 [33]

13 Degussa TiO2 2 25/- 6 UV 36 W (365 nm) - - 360 ̴ 58 [33]

14 Bi-Ni co-doped 
TiO2

1.5 25/- 3 UV 36 W (365 nm) - - 360 86 [33]

15 Titanium diox-
ide nanoarray

- 25/- 4.8 Simulated sunlight Pseudo 1st order 2.45 x 10-3 
min-1

120 25.5 [62]

16 TiO2 0.4 *4x10-5/100 - 150 W tungsten lamp Pseudo 1st order 0.0017 min-1 120 21.3 [34]

17 TiO2-rGO 0.4 *4x10-5/100 - 150 W tungsten lamp Pseudo 1st order 0.0024 min-1 120 28.3 [34]

18 TiO2/CdS 4.5 10/100 - 85 W Oreva bulb with 
4150 lumens intensity

- - 180 86 [35]

19 B-TiO2 0.4 40/50 - 20 W UV lamp (2300 
µW/cm2)

Pseudo 1st order 0.0248 min-1 180 - [63]

20 B-TiO2(50%)/
iM16K

0.4 40/50 - 20 W UV lamp (2300 
µW/cm2)

Pseudo 1st order 0.0233 min-1 180 - [63]

21 TiO2 0.45 10/100 7 85 W Oreva CFL bulb Pseudo 1st order 0.00406 min-1 180 65 [32]

22 Cu-doped TiO2 0.45 10/100 7 85 W Oreva CFL bulb Pseudo 1st order 0.00447 min-1 180 72 [32]

23 P25 0.05 10/100 - Simulated sunlight Pseudo 2nd order 2.21 L mmol-

1 min-1

180 91.4 [64]

24 TiO2 (300 ºC) 0.04 20/250 - 100 W LED light with 
output of 40k Lux

- - 180 90 [65]

25 TiO2 (400 ºC) 0.04 20/250 - 100 W LED light with 
output of 40k Lux

- - 180 76 [65]

Zinc-based photocatalysts

1 ZnO 0.25 10/200 - 15 W Panasonic cool 
daylight lamp

Pseudo 1st order 0.0017 min-1 120 22 [66]

2 ZnO-Bi2MoO6 0.25 10/200 - 15 W Panasonic cool 
daylight lamp

Pseudo 1st order 0.0179 min-1 120 94 [66]

3 ZnO 2 10/50 - Xenon lamp (400 W, λ 
˃ 420 nm)

Pseudo 1st order 0.0029 min-1 90 20 [67]

4 ZnO/MoS2 2 10/50 - Xenon lamp (400 W, λ 
˃ 420 nm)

Pseudo 1st order 0.0062 min-1 90 52 [67]

5 ZnO 0.25 10/100 7 65 – 70 Klux Pseudo 1st order 0.0108 min-1 150 82 [38]

6 Silver modified 
ZnO

0.25 10/100 7 65 – 70 Klux Pseudo 1st order 0.0266 min-1 150 98 [38]

7 ZnO 0.2 **32/50 - Halogen lamp Pseudo 1st order 0.0031 min-1 150 - [68]

8 ZnO/2CsxWO3 0.2 **32/50 - Halogen lamp Pseudo 1st order 0.00624 min-1 150 - [68]

9 ZnO 0.25 10/200 - UV light Pseudo 1st order 0.0119 min-1 120 - [69]

10 ZnO/CdS 0.25 10/200 - UV light Pseudo 1st order 0.0106 min-1 120 - [69]

11 ZnO 0.25 10/200 - Visible light Pseudo 1st order 0.0021 min-1 120 - [69]

12 ZnO/CdS 0.25 10/200 - Visible light Pseudo 1st order 0.0086 min-1 120 - [69]

13 ZnO 0.25 10/200 - Mercury lamp (125 W) Pseudo 1st order 0.0037 min-1 180 - [39]

14 Ag-ZnO 0.25 10/200 - Mercury lamp (125 W) Pseudo 1st order 0.0132 min-1 180 - [39]
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Table 2.
(Continued)

S/N Catalyst
Dosage 
(g/L)

COFL 
(mg/L)/ VOFL (mL)

pH Light source Kinetics model
Rate con-

stant 
Time 
(min)

Efficiency (%) Reference

Silver-based photocatalysts

1 AgFeO2 0.4 10/50 - 5 W white LED 73 
mW.cm-2 (PCX 50 B) 

Pseudo 2nd order 0.00735 
L.mg-1.min-1

60 22.5 [70]

2 AgFeO2-
Bi4TaO8Cl

0.4 10/50 - 5 W white LED 73 
mW.cm-2 (PCX 50 B)

Pseudo 2nd order 0.10638 
L.mg-1.min-1

60 37.5 [70]

3 Ag3PO4 0.5 10/500 - 500 W xenon lamp - - 30 70.3 [71]

4 Ag3PO4/g-C3N4 0.5 10/500 - 500 W xenon lamp - - 10 71.9 [71]

5 AgBr 0.25 10/200 - Visible irradiation Pseudo 1st order 0.0134 min-1 - - [40]

6 AgBr/WO3 0.25 10/200 - Visible irradiation Pseudo 1st order 0.0057 min-1 240 68 [40]

7 AgBr 0.25 10/200 - UV irradiation Pseudo 1st order 0.0088 min-1 - - [40]

8 AgBr/WO3 0.25 10/200 - UV irradiation Pseudo 1st order 0.0046 min-1 240 55 [40]

9 AgBr 0.25 10/200 - Solar light irradiation Pseudo 1st order 0.0279 min-1 - - [40]

10 AgBr/WO3 0.25 10/200 - Solar light irradiation Pseudo 1st order 0.0436 min-1 240 85 [40]

11 Ag2O-C3N4 0.5 10/100 6 Xe lamp (PLS-
SXE300)

- - 5 99.1 [72]

Bismuth-based photocatalysts

1 Bi4TaO8Cl 0.4 10/50 - 5 W white LED 73 
mW.cm-2 (PCX 50 B)

Pseudo 2nd order 0.00721 
L.mg-1.min-1

60 29.7 [70]

2 Bi2MoO6 1 10/100 - Sunlight (55 – 65 Lux) - - 90 71 [73]

Bi2MoO6 0.25 10/200 - 15 W Panasonic cool 
daylight lamp

Pseudo 1st order 0.0092 min-1 120 82 [66]

3 Bi2S3 1 - - 150 W Xe lamp (100 
mW/cm2)

Pseudo 1st order 1.3 x 10-3 
min-1

180 21 [74]

4 Bi2WO6 1 - - 150 W Xe lamp (100 
mW/cm2)

Pseudo 1st order 8.2 x 10-3 
min-1

180 78 [74]

5 Bi2S3/Bi2WO6 1 - - 150 W Xe lamp (100 
mW/cm2)

Pseudo 1st order 11.2 x 10-3 
min-1

180 87 [74]

6 Bi2O3 0.5 25/- 7 Solar radiation (70.3 
Klux)

- - 120 75 [41]

7 Bi2O3/TiO2 0.5 25/- 7 Solar radiation (70.3 
Klux)

- - 120 92.4 [41]

7 Bi2WO6 0.4 10/50 - 50 W energy-saving 
LED lamp

Pseudo 1st order 0.0347 min-1 30 ̴ 70 [42]

8 Bi2WO6/Fe3O4 0.4 10/50 - 50 W energy-saving 
LED lamp

Pseudo 1st order 0.1295 min-1 30 ̴ 99 [42]

9 Bi2WO6/Fe3O4/
BC

0.4 10/50 - 50 W energy-saving 
LED lamp

Pseudo 1st order 0.1835 min-1 30 ̴ 100 [42]

10 BiFeO3 0.5 10/100 8 CFL Bulb (85W, 4150 
lumens, oreva)

Pseudo 1st order 0.0097 min-1 180 80 [44]

11 Bi3O4Cl 0.5 5/100 - 300 W Xe lamp (λ ˃ 
400 nm)

Pseudo 1st order 0.0144 min-1 80 66.8 [75]

12 Bi3O4Cl/
LaVO4

0.5 5/100 - 300 W Xe lamp (λ ˃ 
400 nm)

Pseudo 1st order 0.0344 min-1 80 94.3 [75]

12 Bi2MoO6 0.4 5/50 - 300 W xenon lamp Pseudo 1st order 0.02978 min-1 40 46 [45]

13 Cd- Bi2MoO6 0.4 5/50 - 300 W xenon lamp Pseudo 1st order 0.04839 min-1 40 ̴ 90 [45]

14 Bi2MoO6 0.4 *4x10-5/100 - 150 W tungsten lamp Pseudo 1st order 0.0041 min-1 120 ̴ 38 [34]

15 Bi2MoO6-rGO 0.4 *4x10-5/100 - 150 W tungsten lamp Pseudo 1st order 0.0055 min-1 120 41.2 [34]

16 Bi2MoO6-TiO2 0.4 *4x10-5/100 - 150 W tungsten lamp Pseudo 1st order 0.0090 min-1 120 67.2 [34]

17 Bi2MoO6-rGO-
TiO2

0.4 *4x10-5/100 - 150 W tungsten lamp Pseudo 1st order 0.0174 min-1 120 92.3 [34]

18 BiOCl 0.1 5/50 - 300 W xenon lamp Pseudo 1st order 0.0021 min-1 60 ̴ 20 [76]

19 BiOCl/NaN-
bO3

0.1 5/50 - 300 W xenon lamp Pseudo 1st order 0.016 min-1 60 90 [76]

20 Bi2MoO6 1 10/30 - 150 W xenon lamp Pseudo 1st order 0.0023 min-1 100 40 [77]

21 Bi4TaO-

8Cl-bulk
0.4 20/50 - 5 W white LED (72.9 

mW.cm-2)
Pseudo 1st order 0.00250 min-1 150 34.9 [78]
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Table 2.
(Continued)

S/N Catalyst
Dosage 
(g/L)

COFL 
(mg/L)/ VOFL (mL)

pH Light source Kinetics model
Rate con-

stant 
Time 
(min)

Efficiency (%) Reference

22 Bi4TaO8Cl 0.4 20/50 - 5 W white LED (72.9 
mW.cm-2)

Pseudo 1st order 0.01454 min-1 150 84.2 [78]

23 Bi2O3 0.3 10/100 5 350 W xenon lamp Pseudo 1st order 0.01152 min-1 90 68.6 [79]

24 Bi2O7I 0.1 10/100 - 500 W xenon lamp Pseudo 1st order 0.0046 min-1 180 55.1 [43]

25 Bi2O7I/
MWCNTs

0.1 10/100 - 500 W xenon lamp Pseudo 1st order 0.0129 min-1 180 88.2 [43]

Others

1 CeTi2O6 0.4 20/50 - 20 W lamp (2300 µW/
cm2)

Pseudo 1st order 6.852 x 10-2 
min-1

50 67.9 [80]

2 Gd2Ti2O7 0.4 20/50 - 20 W UV lamp (2300 
µW/cm2)

Pseudo 1st order 7.8 x 10-3 
min-1

90 50.4 [81]

3 Gd2Ti2O7/SiO2 0.4 20/50 - 20 W UV lamp (2300 
µW/cm2)

Pseudo 1st order 1.7 x 10-2 
min-1

90 79.1 [81]

4 g-C3N4 0.1 15/100 - Microsolar 300A (100 
mW/cm2)

Pseudo 1st order 0.0168 min-1 30 21.1 [82]

5 NaNbO3 0.1 15/100 - Microsolar 300A (100 
mW/cm2)

Pseudo 1st order 0.0059 min-1 30 42.5 [82]

6 g-C3N4/ 
NaNbO3

0.1 15/100 - Microsolar 300A (100 
mW/cm2) 

Pseudo 1st order 0.1745 min-1 30 99.5 [82]

7 CdS 0.25 10/100 9 85 W Oreva CFL 
bulb, 4150 lumens, 

λ = 450–650 nm

Langmuir-Hin-
shelwood model

0.02217 min-1 80 79.5 [83]

8 UiO-66/wood 0.02 10/35 6 Simulated sunlight Pseudo 1st order 40.5 x 10-

4min-1

270 - [53]

9 UiO-66 0.02 10/35 6 Simulated sunlight Pseudo 1st order 33.2 x 10-

4min-1

270 - [53]

10 Wood 0.02 10/35 6 Simulated sunlight Pseudo 1st order 27.2 x 10-

4min-1

270 - [53]

11 g-C3N4 0.5 10/500 - 500 W xenon lamp - - 30 4.9 [71]

12 Sm2Ti2O7 - 20/50 - 20 W UV light Pseudo 1st order 0.00977 min-1 70 53.9 [50]

13 Sm2Ti2O7 

supported on 
quartz sand

- 20/50 - 20 W UV light Pseudo 1st order 0.0220 min-1 70 78.6 [50]

14 CQDs@CoO/
La2O3/NiO 

TONCs

0.2 20/100 - - Pseudo 1st order 0.036 min-1 60 91.24 [84]

15 CoO/La2O3/
NiO TONPs

0.2 20/100 - - Pseudo 1st order 0.018 min-1 60 69.70 [84]

16 La2O3 0.2 20/100 - - Pseudo 1st order 0.007 min-1 60 34.63 [84]

17 NiO 0.2 20/100 - - Pseudo 1st order 0.005 min-1 60 27.72 [84]

18 CoO 0.2 20/100 - - Pseudo 1st order 0.003 min-1 60 17.45 [84]

19 Sm2Ti2O7 0.6 20/50 - 20 W UV lamp Pseudo 1st order 0.00402 min-1 150 45.1 [51]

20 Sm2Ti2O7/
NaZSM-5

0.6 20/50 - 20 W UV lamp Pseudo 1st order 0.00769 min-1 150 70.0 [51]

21 Sm2Ti2O7/ 
0.3HZSM-5

0.6 20/50 - 20 W UV lamp Pseudo 1st order 0.0163 min-1 150 93.5 [51]

22 CdS 2 10/50 - Xenon lamp (400 W, λ 
˃ 420 nm)

Pseudo 1st order 0.0036 min-1 90 27.5 [67]

23 MoS2 2 10/50 - Xenon lamp (400 W, λ 
˃ 420 nm)

Pseudo 1st order 0.0031 min-1 90 25.1 [67]

24 CdS/MoS2 2 10/50 - Xenon lamp (400 W, λ 
˃ 420 nm)

Pseudo 1st order 0.0075 min-1 90 61 [67]

25 CdS/MoS2/
ZnO

2 10/50 - Xenon lamp (400 W, λ 
˃ 420 nm)

Pseudo 1st order 0.024 min-1 90 89 [67]

26 g-C3N4 0.5 10/100 7 150 W/cm2 tungsten 
lamp

- - 70 48.6 [85]

27 MnWO4 0.5 10/100 7 150 W/cm2 tungsten 
lamp

- - 70 39.1 [85]
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Table 2.
(Continued)

S/N Catalyst
Dosage 
(g/L)

COFL 
(mg/L)/ VOFL (mL)

pH Light source Kinetics model
Rate con-

stant 
Time 
(min)

Efficiency (%) Reference

28 MnWO4@ 
g-C3N4

0.5 10/100 7 150 W/cm2 tungsten 
lamp

- - 70 90.4 [85]

29 LaVO4 0.5 5/100 - 300 W Xe lamp (λ ˃ 
400 nm)

Pseudo 1st order 0.0003 min-1 80 2.5 [75]

30 Co-MIL-53-
NH2-BT

0.25 10/20 - 500 W Xe lamp (λ ˃ 
400 nm)

Pseudo 1st order 0.0392 min-1 120 99.8 [86]

31 Mn2O3/SiO2 0.7 10/20 - 45 W Philips lamp 
(100 W/m2)

Pseudo 1st order 0.0096 min-1 120 73.2 [87]

32 In2S3 - 25/- 4.8 Simulated sunlight Pseudo 1st order 2.59 x 10-3 
min-1

120 26.8 [62]

33 In2S3/titani-
um dioxide 
nanoarray

- 25/- 4.8 Simulated sunlight Pseudo 1st order 5.24 x 10-3 
min-1

120 92.7 [62]

34 CsxWO3 0.2 **32/50 - Halogen lamp Pseudo 1st order 0.00293 min-1 150 - [68]

35 NiCr-LDH 0.5 15/50 - High-pressure mercury 
lamp (300 W)

Pseudo 1st order 0.0063 min-1 150 - [88]

36 NiCr-LDH/
PSB

0.5 15/50 - High-pressure mercury 
lamp (300 W)

Pseudo 1st order 0.0218 min-1 150 - [88]

37 ZnS/MoS2/
Bi2WO6

0.4 10/50 5 500 W xenon lamp Pseudo 1st order 0.01028 min-1 120 83.7 [89]

38 La2Ti2O7 0.6 40/50 - 2300 µW/cm2 (wave-
length 253.7 nm)

Pseudo 1st order 0.025 min-1 120 95.0 [46]

39 Gd2Ti2O7 0.4 20/50 6.5 20 W UV lamp (2300 
µW/cm2)

Pseudo 1st order 1.05 x 10-2 
min-1

30 27.5 [90]

40 Gd2Ti2O7/
HZSM-5

0.4 20/50 6.5 20 W UV lamp (2300 
µW/cm2)

Pseudo 1st order 3.52 x 10-2 
min-1

30 54.5 [90]

41 WO3 0.25 10/200 - Visible irradiation Pseudo 1st order 0.0004 min-1 - - [40]

42 WO3 0.25 10/200 - UV irradiation Pseudo 1st order 0.0022 min-1 - - [40]

43 WO3 0.25 10/200 - Solar light irradiation Pseudo 1st order 0.0059 min-1 - - [40]

44 NaNbO3 0.1 5/50 - 300 W xenon lamp Pseudo 1st order 0.002 min-1 60 ̴ 20 [76]

45 MoO3 1 20/- - 150 W xenon lamp Pseudo 1st order - 100 41 [91]

46 C3N4 1 20/- - 150 W xenon lamp Pseudo 1st order - 100 39 [91]

47 Ag/C3N4 1 20/- - 150 W xenon lamp Pseudo 1st order 5.3 x 10-3 
min-1

100 47 [91]

48 MoO3/C3N4 1 20/- - 150 W xenon lamp Pseudo 1st order 8.46 x 10-3 
min-1

100 54 [91]

49 MoO3/Ag/C3N4 1 20/- - 150 W xenon lamp Pseudo 1st order 17.84 x 10-3 
min-1

100 96 [91]

50 CdS 0.25 10/200 - UV light Pseudo 1st order 0.0096 min-1 120 - [69]

51 CdS 0.25 10/200 - Visible light Pseudo 1st order 0.0070 min-1 120 - [69]

52 C3N4 0.5 10/100 6 Xe lamp (PLS-
SXE300)

- - 15 14.6 [72]

53 MoS2 1 10/30 - 150 W xenon lamp Pseudo 1st order 0.0033 min-1 100 32 [77]

54 MoS2/Bi2MoO6 1 10/30 - 150 W xenon lamp Pseudo 1st order 0.0180 min-1 100 98.4 [77]

55 CeTi2O6 (600 
ºC)

0.4 20/50 - 20 W lamp (2300 µW/
cm2)

- - 30 31.2 [52]

56 CeTi2O6 (800 
ºC)

0.4 20/50 - 20 W lamp (2300 µW/
cm2)

- - 30 56.7 [52]

57 ZnCdS - 30/- - 300 W xenon lamp (λ 
≥ 420 nm)

Pseudo 1st order 0.0130 min-1 90 75.8 [49]

58 ZnIn2S4 - 30/- - 300 W xenon lamp (λ 
≥ 420 nm)

Pseudo 1st order 0.0138 min-1 90 78.6 [49]

59 g-C3N4 - 30/- - 300 W xenon lamp (λ 
≥ 420 nm)

Pseudo 1st order 0.0049 min-1 90 52.5 [49]

60 g-C3N4-vTA - 30/- - 300 W xenon lamp (λ 
≥ 420 nm)

Pseudo 1st order 0.0098 min-1 90 65.4 [49]
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erojunctions for better results, notwithstanding, remarkable performanc-
es are still being recorded using pristine photocatalysts. Moreover, the 
interest in the process has led to the development of varieties of novel 
materials to serve as photocatalysts for the degradation of pollutants. 
Various categories photocatalysts including titanium-based, zinc-based, 
bismuth-based, silver-based and others have been used to degrade OFL 
and their efficiencies are summarized in Table 2. 

4.1. Titanium-based photocatalysts

A prominent titanium-based photocatalyst frequently being used 
in the degradation of pollutants is titanium dioxide (TiO2) [27]. It is 
cheap, non-toxic, and has strong oxidising power with long-term sta-

bility against chemical corrosion and photocorrosion [28, 29]. Despite 
these interesting features, TiO2 has some limitations. For instance, it has 
a wide bandgap, which makes it active only upon irradiation with a UV 
light [27]. Similarly, the rate of chemical reaction with adsorbed species 
for redox reactions is slower compared to the rate of charge carriers 
recombination [30]. Fortunately, such challenges are often addressed via 
doping and formation of heterojunctions.

The impact of doping on the photocatalytic performance of TiO2 to-
wards degradation of OFL can be demonstrated using the works by Kaur 
et al. [31] and Bhatia et al. [32]. In the case of Kaur et al. [31], copper 
doped TiO2 (Cu-doped TiO2) was synthesized and used as photocatalyst 
to degrade OFL. Compared to pristine TiO2 having a bandgap of 3.51 
eV and specific surface area of 16.5 m2/g, the bandgap and specific sur-

Table 2.
(Continued)

S/N Catalyst
Dosage 
(g/L)

COFL 
(mg/L)/ VOFL (mL)

pH Light source Kinetics model
Rate con-

stant 
Time 
(min)

Efficiency (%) Reference

61 ZnCdS@
ZnIn2S4

- 30/- - 300 W xenon lamp (λ 
≥ 420 nm)

Pseudo 1st order 0.0161 min-1 90 86.4 [49]

62 ZnCdS@
ZnIn2S4@g-
C3N4-vTA

- 30/- - 300 W xenon lamp (λ 
≥ 420 nm)

Pseudo 1st order 0.0256 min-1 90 95.7 [49]

63 Bulk g-C3N4 0.5 30/100 - 300 W xenon lamp 
(PLS-SXE 300/300 

UV)

Pseudo 1st order 0.006 min-1 - - [92]

64 P doped 
g-C3N4

0.5 30/100 - 300 W xenon lamp 
(PLS-SXE 300/300 

UV)

Pseudo 1st order 0.009 min-1 90 38.4 [92]

65 MIL-88A(Fe) 0.5 30/100 - 300 W xenon lamp 
(PLS-SXE 300/300 

UV)

Pseudo 1st order 0.003 min-1 90 50.6 [92]

66 P-CN100/MIL-
88A

0.5 30/100 - 300 W xenon lamp 
(PLS-SXE 300/300 

UV)

Pseudo 1st order 0.019 min-1 90 95.6 [92]

67 CoFe2O4@
Bi2O3/NiO

0.3 10/100 5 350 W xenon lamp Pseudo 1st order 0.03316 min-1 90 95.2 [79]

68 NiO 0.3 10/100 5 350 W xenon lamp Pseudo 1st order 0.00113 min-1 90 50.5 [79]

69 g-C3N4 0.1 20/100 - PLS-SXE300 Xe lamp Pseudo 1st order 0.00214 min-1 200 - [93]

70 PCN-222 0.1 20/100 - PLS-SXE300 Xe lamp Pseudo 1st order 0.00361 min-1 200 - [93]

71 PCN-222/g-
C3N4

0.1 20/100 - PLS-SXE300 Xe lamp Pseudo 1st order 0.01448 min-1 200 95.9 [93]

72 CdS 0.05 10/100 - Simulated sunlight Pseudo 2nd order 2.21 L mmol-

1 min-1

180 72.9 [64]

73 UiO-67/CdS 0.05 10/100 - Simulated sunlight Pseudo 2nd order 2.21 L mmol-

1 min-1

180 86.7 [64]

74 rGO/CdS 0.05 10/100 - Simulated sunlight Pseudo 2nd order 2.21 L mmol-

1 min-1

180 55.4 [64]

75 UiO-67/CdS/
rGO

0.05 10/100 - Simulated sunlight Pseudo 2nd order 2.21 L mmol-

1 min-1

180 91 [64]

76 Fe2O3 0.05 10/100 - Simulated sunlight Pseudo 2nd order 2.21 L mmol-

1 min-1

180 91.4 [64]

77 CdS 0.25 10/200 - 15 W daylight lamp - - 240 63 [47]

78 CdS 0.25 10/200 - Sunlight - - 240 89 [47]

79 SWCNTs 0.1 20/50 - 300 W xenon lamp Pseudo 1st order 0.008 min-1 65 38.5 [48]

80 Hematite 0.1 20/50 - 300 W xenon lamp Pseudo 1st order 0.014 min-1 65 56.3 [48]

81 Fe2O3/
SWCNTs

0.1 20/50 - 300 W xenon lamp Pseudo 1st order 0.019 min-1 65 67.5 [48]

82 NH2-MIL-125 0.1 20/50 - 300 W xenon lamp Pseudo 1st order 0.032 min-1 65 84.8 [48]

83 Fe2O3/CNTs/
MIL

0.1 20/50 - 300 W xenon lamp Pseudo 1st order 0.065 min-1 65 99.3 [48]
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face area for Cu-doped TiO2 were found to be 2.91 eV and 23.2 m2/g, 
respectively. Within 180 min and at pH 7, 72% (rate constant of 0.00447 
min-1) of OFL (10 mg/L) was degraded over Cu-doped TiO2 photocat-
alyst. Within similar time span, using 10 mg/L OFL at pH 7, 65% (rate 
constant of 0.00406 min-1) degradation efficiency was recorded using 
pristine TiO2. 

The effect of Bi & Ni co-doping on TiO2 towards photocatalytic deg-
radation of OFL was studied by Bhatia et al. [32]. Under the conditions 
of pH 3, OFL concentration of 25 g/L, catalyst dosage of 1.5 g/L and 
using solar irradiation, 86% degradation efficiency was recorded in 6 h 
using Bi-Ni co-doped TiO2, while performance using Degussa TiO2 is 
40%. However, the record under UV irradiation was 42.2% for Bi-Ni 
co-doped TiO2 and 76% for Degussa TiO2. Besides co-doping, Bhatia et 
al. [32], also studied the effect pH on the photocatalytic degradation of 
OFL using Degussa P25. Maximum degradation efficiency (72%) was 
recorded at pH 3. However, there was systematic decrease in efficiency 
as the pH rises from 5-10. 

The use of TiO2 based composites such as TiO2-rGO and TiO2/CdS 
as photocatalysts to degrade OFL have been reported by Raja et al. [33] 
and Kaur et al. [34]. The TiO2-rGO had narrow band gap and lower 
photoluminescence intensity than pristine TiO2, with photocatalytic deg-
radation efficiency of 21.3 and 28.3% by TiO2-rGO and TiO2 towards 
OFL antibiotic. The lower band gap and separation of charge carriers 
contributed to the better performance by TiO2-rGO. In the case of TiO2/
CdS composite, pristine TiO2 had a band gap of 3.20 eV but decreased 
to 2.25 eV in the case of TiO2/CdS. Similar pattern was observed in the 
case of photoluminescence. During degradation, 0.45 g/L of TiO2 and 
TiO2/CdS were able to degrade 65 and 86% of 10 mg/L OFL at pH 7. 
However, the performances recorded at pH 5 and 9 using TiO2/CdS are 
74.3 and 77.1%, respectively. Usually, the effect of pH on the degrada-
tion efficiency is attributed to the ionization state of the drug and catalyst 
and/or generated species (e.g. h+, •OH) at low, neutral, or high pH active 
in the degradation of organic pollutants.               

The role of calcination temperatures of 300, 350, 400 and 450 ºC on 
the features and performance of TiO2 photocatalyst towards OFL deg-
radation was studied by Mushtaq et al. [11]. The performance recorded 
using TiO2 photocatalyst calcined at 300, 350, 400 and 450 ºC towards 
OFL degradation were 91, 87, 76 and 64%, respectively. The decrease 
in degradation efficiency with increase in calcination temperature is at-
tributed to smaller surface area and larger particle size.       

4.2. Zinc-based photocatalysts

A very famous zinc-based material used as photocatalyst is ZnO. It is 
an excellent II-IV semiconducting oxide with an exciton B.E of 60 meV 
and B.E of 3.37 eV [35]. Due to its high quantum efficiency and non-tox-
icity, ZnO is often considered as a replacement to TiO2 [36]. Notwith-
standing, ZnO exhibits low efficiency under solar irradiation with rapid 
recombination of charge carriers. However, both pristine and modified 
forms of ZnO have been using as photocatalysts to degrade OFL.

For instance, Kaur et al. [37] reported the use of pristine and sil-
ver modified ZnO as photocatalyst to degrade OFL in aqueous media. 
Compared to pristine ZnO which degraded 82% of 10 mg/L OFL within 
150 min under solar irradiation, silver modified ZnO degraded 98%. The 
better performance recorded is due reduction in band gap from 3.23 eV 
in ZnO to 3.10 eV in silver modified ZnO, in addition to lower recombi-
nation rate of charge carriers in silver modified.   

In a different study, Chankhanittha et al. [38] studied the effect of 
different light source on the activity of ZnO and Ag-ZnO towards degra-
dation OFL. The degradation rate of ZnO towards OFL antibiotics was 
found to be 0.0037, 0.0020 and 0.0414 min-1 under UV, visible and nat-
ural sunlight. However, Ag-ZnO degraded OFL at the rate of 0.0132, 
0.0036 and 0.0444 min-1 under UV, visible and natural sunlight. The bet-

ter performance by Ag-ZnO is due to higher crystallinity, greater specific 
surface area, lower recombination of charge carriers and wider range of 
light response.

4.3. Silver-based photocatalysts

Various silver-based photocatalysts including AgFeO2, Ag3PO4, 
AgBr and their composites have been reported to facilitate the degrada-
tion of OFL in aqueous media. For instance, Piriyanon et al. [39] report-
ed the use of AgBr and AgBr/WO3 as photocatalysts to degrade OFL. 
The degradation rates of AgBr towards OFL were found to be 0.0134, 
0.0088 and 0.0279 min-1 under visible, UV and solar light irradiation. 
However, the performances using AgBr/WO3 composite under visible, 
UV and solar light irradiation were 0.0057, 0.0046 and 0.0436 min-1. In-
terestingly, under solar light irradiation, AgBr/WO3 composite displayed 
much higher performance than AgBr, an effect mainly attributed to the 
suppression of electron-hole recombination and improved photo absorp-
tion. In generals, literatures reporting the degradation of OFL using sil-
ver-based photocatalysts are still lacking.        

4.4. Bismuth-based photocatalysts

Bismuth-based photocatalyst materials such as bismuth oxide 
(Bi2O3), bismuth oxyhalides (such as BiOX, where X represents a hal-
ogen), and bismuth-based perovskites are a class of materials that have 
gained attention in recent years for their potential applications in various 
photocatalytic processes, including pollutant degradation, and solar en-
ergy conversion. Fortunately, there are reasonable studies involving the 
use of bismuth-based materials as photocatalysts to degrade OFL.

In the studies by Sood et al. [40], pristine Bi2O3 and a composite of 
Bi2O3/TiO2 were used as photocatalysts to degrade OFL. Although the 
wavelength of Bi2O3 was 446 nm and that of the optimized Bi2O3/TiO2 
was 404.6 nm, the degradation efficiency of Bi2O3 towards OFL was 75% 
and that of optimized Bi2O3/TiO2 was 92.4% in 120 min. Factors such 
as small size, high surface area etc. contributed to such performance. 

The use of Bi2WO6, Bi2WO6/Fe3O4 and Bi2WO6/Fe3O4/BC as photo-
catalysts to degrade OFL have been reported by Wang et al. [41]. The 
introduction of biochar prevented the agglomeration of Bi2WO6 micro-
spheres and Fe3O4 nanoparticles. On the other hand, Fe3O4 and biochar 
promoted charge separation and light absorption. Moreover, the Bi2WO6/
Fe3O4/BC had the largest adsorption capacity. The degradation rate of Bi-

2WO6, Bi2WO6/Fe3O4 and Bi2WO6/Fe3O4/BC towards OFL were found 
to be 0.0347, 0.1295 and 0.1835 min-1. Another ternary Bi2MoO6-rGO-
TiO2 photocatalyst have been used by Raja et al. [33] to degrade OFL. 
The degradation rate by Bi2MoO6, Bi2MoO6-rGO, Bi2MoO6-TiO2 and 
Bi2MoO6-rGO-TiO2 were found to be 0.0041, 0.0055, 0.0090 and 0.174 
min-1. The synergistic effect between Bi2MoO6-TiO2 and rGO resulted 
in the higher performance by Bi2MoO6-rGO-TiO2 compared to other 
catalysts.     

Multiwalled carbon nanotubes (MWCNTs) have been used by Gao 
et al. [42] to form MWCNTs/Bi5O7I heterojunction to serve as photo-
catalyst to degrade OFL. Due to its ability to serve as photoelectrons 
transformation pathway, MWCNTs-[42]/[43] Bi5O7I degraded OFL at 
the rate of 0.0129 min-1, compared to the rate by Bi5O7I which is just 
0.0046 min-1.

The role of cadmium doping in the performance of Bi2MoO6 towards 
photocatalytic degradation of OFL have been reported by Xu et al. [44]. 
Compared to pristine Bi2MoO6 with degradation rate 0.02978 min-1, 1% 
Cd- Bi2MoO6 had the best degradation rate of 0.04839 min-1. The in-
troduction of Cd atom lowered the valence band (VB) and widened the 
bandgap of pristine Bi2MoO6, thereby enhancing its oxidation capacity 
and suppressing the recombination of charge carriers.   
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4.5. Others

Aside titanium-based, zinc-based, silver-based and bismuth-based 
photocatalysts, there are other catalysts that are being used/developed 
due to the interest in concept of degrading pollutants including OFL. Al-
though degradation efficiency greater than 50% has been recorded using 
some catalysts including La2Ti2O7 [45], CdS [46], NH2-MIL-125 [47], 
g-C3N4 [48] etc. however, modification via doping, formation of hetero-
junction/composites have resulted in higher efficiencies.

For instance, Zhang et al. [49] reported the use of Sm2Ti2O7 sup-
ported on quartz sand as photocatalyst to degrade OFL. An efficiency of 
53.9% was achieved using pristine Sm2Ti2O7, supporting the catalyst on 
quartz sand resulted in a higher efficiency of 99.2%. Although, the activ-
ity of photocatalysts usually reduced after loading on various supports, 
however, quartz sand is transparent to UV photons and, the lifetime of 
charge carriers is much longer in Sm2Ti2O7 supported on quartz sand 
than in pristine Sm2Ti2O7.  

Yang et al. [50] reported the use of Sm2Ti2O7, Sm2Ti2O7/NaZSM-5 
and Sm2Ti2O7/HZSM-5 as photocatalysts to degrade OFL. HZSM-5 was 
prepared using NaZSM-5 via treatment with hydrochloric acid. On ap-
plication, Sm2Ti2O7, Sm2Ti2O7/NaZSM-5 and Sm2Ti2O7/HZSM-5 photo-
catalysts were able to degrade 45.1, 70 and 93.5% OFL in 150 min. The 
better performance recorded in the case Sm2Ti2O7/HZSM-5 is attributed 
to the increased hydroxyl radicals production.   

The effect of calcination temperature on the photocatalytic perfor-
mance of porous cerium titanate has been studied by Wang et al. [51]. 
Initially, the fractions of Ce2Ti2O6, CeO2, anatase TiO2 and rutile TiO2 
phases were found to vary with calcination temperature. The adsorption 
capacity of Ce2Ti2O6 was found to drastically decrease with an increase 
in calcination temperature. However, the photocatalytic efficiency in-
creased from 31.2 to 56.7% when the calcination temperature was raised 
from 600 to 800 ºC. Beyond 800 ºC, the material was found to lose its 
activity.

Interestingly, Shi et al. [52] reported the use of a composite of metal 
organic frameworks (UiO-66) and wood as a photocatalyst to degrade 
OFL under sunlight. The performance by UiO-66/wood was inspiring 
with a degradation rate constant 1.2 and 1.5 times higher than that of 
UiO-66 and wood. Such result was because, the presence of wood inhib-
ited the recombination of charge carriers, thus improving the photocata-
lytic efficiency of UiO-66/wood.

5. Conclusion

From the above brief survey, photocatalytic degradation technology 
is a prominent method employed in the treatment of wastewater contam-
inated by ofloxacin, and efficient results have been reported using such 
approach. Notwithstanding, such efficient results are usually obtained 
after modification of the pristine photocatalysts via doping, formation of 
composites or construction of heterojunctions. In addition to such modi-
fications, the morphology and surface area of the catalysts were found to 
have impact on their photocatalytic performance.  However, most of the 
studies reported are results of laboratory scale experiments and not from 
real wastewater treatment plants. Similarly, studies on the photocatalytic 
degradation using immobilized composites should be explored for more 
convenient remediation process. 
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