

Available online at www.jourcc.comJournal homepage: www.JOURCC.com

Journal of Composites and Compounds

A short review on the photocatalytic degradation of ofloxacin in aqueous media

Alomari Asma Dhahawi Ahmad ^a, Alamri Rahmah Dhahawi Ahmad ^{b, *}

^a Chemistry Department, Al-Qunfudah University College, Umm Al-Qura University, Al-Qunfudah 1109, Saudi Arabia

^b Al Mukhwah Education Directorate, Ministry of Education 65441, Saudi Arabia

ABSTRACT

Among the commonly used advanced oxidation processes (AOPs) commonly employed in wastewater remediation, photocatalytic remediation has remained prominent and promising. This is because the process is effective in degrading and even mineralizing numerous organic pollutants including ofloxacin. In view of that, various categories photocatalysts such as titanium-based, zinc-based, bismuth-based, silver-based, and others have been and are still continuously tested by various researchers in remediating wastewater contaminated by pollutants such as ofloxacin. This short review focuses on reviewing some publications, especially those reported in the last decade involving photocatalytic degradation of ofloxacin in aqueous media.

©2023 UGPH.

Peer review under responsibility of UGPH.

ARTICLE INFORMATION

Article history:

Received 14 May 2023

Received in revised form 26 June 2023

Accepted 28 August 2023

Keywords:

Ofloxacin

Photocatalytic degradation

Photocatalysts

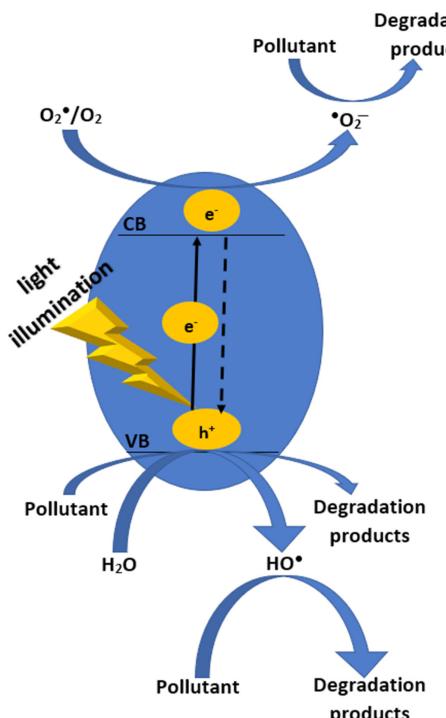
UV-light

Visible light

Table of contents

1. Introduction	179
2. Exposure effects of OFL on environment and living organisms	180
3. Mechanism of photocatalytic degradation	180
4. Performance assessment of photocatalysts in OFL degradation	180
4.1. Titanium-based photocatalysts	185
4.2. Zinc-based photocatalysts	186
4.3. Silver-based photocatalysts	186
4.4. Bismuth-based photocatalysts	186
4.5. Others	187
5. Conclusion	187

1. Introduction


Water pollution has remained one of the leading global environmental challenges, following the discharge of toxic substances from various anthropogenic activities [1]. Among the toxic substances being discharged, a group of contaminants, including pharmaceuticals and personal care products (PPCPs), contrast media, plasticizers, nanomaterials, flame retardants, surfactants, food additives, wood preservatives, pesticides, hormones etc., have been recognized as significant water pollutants and are termed as *emerging contaminants* (ECs).

As a class of ECs, PPCPs are also components with a high concentration in wastewater, amongst which antibiotics have received significant attention due to their impact on the microbial community [2, 3]. Among the antibiotics, fluoroquinolones, including ofloxacin (OFL), are

frequently detected in wastewaters and surface waters [4, 5]. It is also reported that the techniques currently employed by most wastewater treatment plants (WWTPs) have limited capacity for the thorough elimination of PPCPs, including OFL from wastewater [6].

Ofloxacin (Table 1) is a second-generation fluoroquinolone antibiotic with the chemical formula of $C_{18}H_{20}FN_3O_4$ and chemical name 9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7H-pyrido-[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid [7, 8]. It was patented in 1980 and subsequently approved for medical use in 1985 [9, 10]. Currently, OFL is frequently prescribed for the treatment of bronchitis, infectious diarrhoea, pneumonia, chlamydia, pelvic inflammatory disease, eye infections, digestive infections, ear infections, gonorrhoea, respiratory tract infections, urinary tract infections, gastrointestinal infections, and skin infections [11-13].

* Corresponding author: Alamri Rahmah Dhahawi Ahmad; E-mail: t337472@bg.moe.gov.sa

Fig. 1. A schematic illustration of photocatalytic degradation process in a semiconductor material.

However, due to its partial metabolism in the body after ingestion, biological resistance, and the large volume of pharmaceutical wastewater which is being released untreated, studies have reported the detection of OFL with different concentrations in hospital wastewater (25,000 – 35,000 ng/L), municipal wastewater treatment plants (53 – 1800 ng/L) and surface water (10 – 535 ng/L), with a residence time of about 10.6 days [14-16].

Nowadays, the well-known methods commonly employed to remove persistent organic contaminants, including OFL, are the Advanced Oxidation Processes (AOPs) of which photocatalytic degradation is prominent. These processes involve generating highly reactive and non-selective free radical species, which can destroy many organic pollutants. The AOPs are currently categorized as environmentally friendly processes since they neither result in secondary pollution nor the generation of excessive hazardous sludge [17-19]. In this regard, the present work reviewed variety of photocatalysts used by various researchers in treating wastewater contaminated by OFL.

2. Exposure effects of OFL on environment and living organisms.

Residual OFL pose a serious threat to both the ecological environment and the human health [20]. For instance, the presence of OFL in water results in high colour with unpleasant odours [10, 21]. It can result in acute toxicity (when presents in mg/L) and chronic toxicity (when presents in μ g/L) to aquatic organisms [22]. The presence of OFL may also lead to microbial resistance among pathogens/generation of superbugs or the death of microorganisms effective in wastewater remediation [14, 21, 23]. For humans, low concentrations of OFL could be enriched into the human body through the food chain [23]. The development of antibiotic resistant bacteria could be a potential harm for people's ability to defeat those bacterial strains [24, 25]. After long-term exposure, OFL may also pose considerable health risk leading to dizziness, abdominal pain and numbness of limbs [26]. Thus, identifying the proper processes for the thorough and complete elimination of OFL from wastewater is essential.

3. Mechanism of photocatalytic degradation

The degradation of pollutants via semiconductor photocatalysis is initiated through illumination of the material (e.g. TiO_2 , ZnO , BiOBr etc.) with light of sufficient wavelength. This leads to the migration of electrons from valence band (VB) to conduction band (CB), producing electron-hole pairs. However, if the challenge of charge pairs recombination is successfully overcome, the holes (h^+) at the valence band (VB), depending on their oxidizing power could degrade the pollutants directly or oxidizes water (H_2O) to generate hydroxyl radicals (HO^*) for subsequent degradation of the pollutant. The electrons at the conduction band (CB) convert oxygen (O_2) to superoxide radical anions (O_2^-), which also degrade pollutants. The schematic illustration of the process is shown in Figure 1. However, it should be mentioned that the degradation pathway of organic pollutants including OFL is very subjective, and the pathway varies greatly from study to study.

Figure 1: A schematic illustration of photocatalytic degradation process in a semiconductor material.

4. Performance assessment of photocatalysts in OFL degradation

Over the years, various researchers have made consistent efforts to eradicate pollutants including OFL from wastewater via photocatalytic degradation process. Among the materials reported in the process are the TiO_2 -based photocatalysts, ZnO -based photocatalysts, Bi -based photocatalysts are prominent. Although the photocatalysts are sometimes being augmented using strategies such as doping and formation of het-

Table 1.

Molecular structure and some physicochemical properties of OFL

Property	Reference
Chemical formula	$\text{C}_{18}\text{H}_{20}\text{FN}_3\text{O}_4$
CAS number	82419-36-1
Therapeutic group	Antibiotic
Chemical structure	
Molecular weight (g/mol)	361.4
Color	White
Melting point	270 – 273 °C
Solubility in water at 25 °C (mg/mL)	60 (pH = 2 – 5); 4 (pH = 7); 303 (pH = 9.8)
Partition coefficient	-0.39
Dissociation constant	6.10/8.28
Octanol/water partition coefficient $\log k_{ow}$	0.41 (pH 7); 0.33 (pH 7.2); 0.28 (pH 7.3)
Isoelectric constants	$\text{pKa}_1 = 5.97$; $\text{pKa}_2 = 9.28$
Vapour pressure (mm Hg)	1.55E-0.13
Henry constant at 25 °C (atm m^{-3} mole $^{-1}$)	4.98E-0.20
Pharmacokinetic parameters	Bioavailability (%) = 70-90 Time of half-life (h) = 5-7.4 Excretion in urine (%) = 80

Table 2.

List of various photocatalysts and their efficiencies in degrading OFL.

S/N	Catalyst	Dosage (g/L)	C_{OFL} (mg/L) / V_{OFL} (mL)	pH	Light source	Kinetics model	Rate constant	Time (min)	Efficiency (%)	Reference
Titanium-based photocatalysts										
1	TiO ₂	0.5	25/-	7	Solar radiation (70.3 Klux)	-	-	120	32.5	[41]
2	Degussa TiO ₂	1.5	25/-	3	UV 36 W (365 nm)	Pseudo 1 st order	0.0036 min ⁻¹	360	72	[33]
3	Degussa TiO ₂	1.5	25/-	4	UV 36 W (365 nm)	-	-	360	~62	[33]
4	Degussa TiO ₂	1.5	25/-	5	UV 36 W (365 nm)	-	-	360	~65	[33]
5	Degussa TiO ₂	1.5	25/-	6	UV 36 W (365 nm)	-	-	360	~58	[33]
6	Degussa TiO ₂	1.5	25/-	7	UV 36 W (365 nm)	-	-	360	~55	[33]
7	Degussa TiO ₂	1.5	25/-	8	UV 36 W (365 nm)	-	-	360	~45	[33]
8	Degussa TiO ₂	1.5	25/-	9	UV 36 W (365 nm)	-	-	360	~39	[33]
9	Degussa TiO ₂	1.5	25/-	10	UV 36 W (365 nm)	-	-	360	~37	[33]
10	Degussa TiO ₂	0.5	25/-	6	UV 36 W (365 nm)	-	-	360	~50	[33]
11	Degussa TiO ₂	1	25/-	6	UV 36 W (365 nm)	-	-	360	~56	[33]
12	Degussa TiO ₂	1.5	25/-	6	UV 36 W (365 nm)	-	-	360	72	[33]
13	Degussa TiO ₂	2	25/-	6	UV 36 W (365 nm)	-	-	360	~58	[33]
14	Bi-Ni co-doped TiO ₂	1.5	25/-	3	UV 36 W (365 nm)	-	-	360	86	[33]
15	Titanium dioxide nanoarray	-	25/-	4.8	Simulated sunlight	Pseudo 1 st order	2.45 x 10 ⁻³ min ⁻¹	120	25.5	[62]
16	TiO ₂	0.4	*4x10 ⁻⁵ /100	-	150 W tungsten lamp	Pseudo 1 st order	0.0017 min ⁻¹	120	21.3	[34]
17	TiO ₂ -rGO	0.4	*4x10 ⁻⁵ /100	-	150 W tungsten lamp	Pseudo 1 st order	0.0024 min ⁻¹	120	28.3	[34]
18	TiO ₂ /CdS	4.5	10/100	-	85 W Oreva bulb with 4150 lumens intensity	-	-	180	86	[35]
19	B-TiO ₂	0.4	40/50	-	20 W UV lamp (2300 μ W/cm ²)	Pseudo 1 st order	0.0248 min ⁻¹	180	-	[63]
20	B-TiO ₂ (50%)/iM16K	0.4	40/50	-	20 W UV lamp (2300 μ W/cm ²)	Pseudo 1 st order	0.0233 min ⁻¹	180	-	[63]
21	TiO ₂	0.45	10/100	7	85 W Oreva CFL bulb	Pseudo 1 st order	0.00406 min ⁻¹	180	65	[32]
22	Cu-doped TiO ₂	0.45	10/100	7	85 W Oreva CFL bulb	Pseudo 1 st order	0.00447 min ⁻¹	180	72	[32]
23	P25	0.05	10/100	-	Simulated sunlight	Pseudo 2 nd order	2.21 L mmol ⁻¹ min ⁻¹	180	91.4	[64]
24	TiO ₂ (300 °C)	0.04	20/250	-	100 W LED light with output of 40k Lux	-	-	180	90	[65]
25	TiO ₂ (400 °C)	0.04	20/250	-	100 W LED light with output of 40k Lux	-	-	180	76	[65]
Zinc-based photocatalysts										
1	ZnO	0.25	10/200	-	15 W Panasonic cool daylight lamp	Pseudo 1 st order	0.0017 min ⁻¹	120	22	[66]
2	ZnO-Bi ₂ MoO ₆	0.25	10/200	-	15 W Panasonic cool daylight lamp	Pseudo 1 st order	0.0179 min ⁻¹	120	94	[66]
3	ZnO	2	10/50	-	Xenon lamp (400 W, λ > 420 nm)	Pseudo 1 st order	0.0029 min ⁻¹	90	20	[67]
4	ZnO/MoS ₂	2	10/50	-	Xenon lamp (400 W, λ > 420 nm)	Pseudo 1 st order	0.0062 min ⁻¹	90	52	[67]
5	ZnO	0.25	10/100	7	65 – 70 Klux	Pseudo 1 st order	0.0108 min ⁻¹	150	82	[38]
6	Silver modified ZnO	0.25	10/100	7	65 – 70 Klux	Pseudo 1 st order	0.0266 min ⁻¹	150	98	[38]
7	ZnO	0.2	**32/50	-	Halogen lamp	Pseudo 1 st order	0.0031 min ⁻¹	150	-	[68]
8	ZnO/2Cs _x WO ₃	0.2	**32/50	-	Halogen lamp	Pseudo 1 st order	0.00624 min ⁻¹	150	-	[68]
9	ZnO	0.25	10/200	-	UV light	Pseudo 1 st order	0.0119 min ⁻¹	120	-	[69]
10	ZnO/CdS	0.25	10/200	-	UV light	Pseudo 1 st order	0.0106 min ⁻¹	120	-	[69]
11	ZnO	0.25	10/200	-	Visible light	Pseudo 1 st order	0.0021 min ⁻¹	120	-	[69]
12	ZnO/CdS	0.25	10/200	-	Visible light	Pseudo 1 st order	0.0086 min ⁻¹	120	-	[69]
13	ZnO	0.25	10/200	-	Mercury lamp (125 W)	Pseudo 1 st order	0.0037 min ⁻¹	180	-	[39]
14	Ag-ZnO	0.25	10/200	-	Mercury lamp (125 W)	Pseudo 1 st order	0.0132 min ⁻¹	180	-	[39]

Table 2.
(Continued)

S/N	Catalyst	Dosage (g/L)	C_{OFL} (mg/L)/ V_{OFL} (mL)	pH	Light source	Kinetics model	Rate constant	Time (min)	Efficiency (%)	Reference
Silver-based photocatalysts										
1	AgFeO ₂	0.4	10/50	-	5 W white LED 73 mW.cm ⁻² (PCX 50 B)	Pseudo 2 nd order	0.00735 L.mg ⁻¹ .min ⁻¹	60	22.5	[70]
2	AgFeO ₂ ⁻ Bi ₄ TaO ₈ Cl	0.4	10/50	-	5 W white LED 73 mW.cm ⁻² (PCX 50 B)	Pseudo 2 nd order	0.10638 L.mg ⁻¹ .min ⁻¹	60	37.5	[70]
3	Ag ₃ PO ₄	0.5	10/500	-	500 W xenon lamp	-	-	30	70.3	[71]
4	Ag ₃ PO ₄ /g-C ₃ N ₄	0.5	10/500	-	500 W xenon lamp	-	-	10	71.9	[71]
5	AgBr	0.25	10/200	-	Visible irradiation	Pseudo 1 st order	0.0134 min ⁻¹	-	-	[40]
6	AgBr/WO ₃	0.25	10/200	-	Visible irradiation	Pseudo 1 st order	0.0057 min ⁻¹	240	68	[40]
7	AgBr	0.25	10/200	-	UV irradiation	Pseudo 1 st order	0.0088 min ⁻¹	-	-	[40]
8	AgBr/WO ₃	0.25	10/200	-	UV irradiation	Pseudo 1 st order	0.0046 min ⁻¹	240	55	[40]
9	AgBr	0.25	10/200	-	Solar light irradiation	Pseudo 1 st order	0.0279 min ⁻¹	-	-	[40]
10	AgBr/WO ₃	0.25	10/200	-	Solar light irradiation	Pseudo 1 st order	0.0436 min ⁻¹	240	85	[40]
11	Ag ₂ O-C ₃ N ₄	0.5	10/100	6	Xe lamp (PLS-SXE300)	-	-	5	99.1	[72]
Bismuth-based photocatalysts										
1	Bi ₄ TaO ₈ Cl	0.4	10/50	-	5 W white LED 73 mW.cm ⁻² (PCX 50 B)	Pseudo 2 nd order	0.00721 L.mg ⁻¹ .min ⁻¹	60	29.7	[70]
2	Bi ₂ MoO ₆	1	10/100	-	Sunlight (55 – 65 Lux)	-	-	90	71	[73]
	Bi ₂ MoO ₆	0.25	10/200	-	15 W Panasonic cool daylight lamp	Pseudo 1 st order	0.0092 min ⁻¹	120	82	[66]
3	Bi ₂ S ₃	1	-	-	150 W Xe lamp (100 mW/cm ²)	Pseudo 1 st order	1.3 x 10 ⁻³ min ⁻¹	180	21	[74]
4	Bi ₂ WO ₆	1	-	-	150 W Xe lamp (100 mW/cm ²)	Pseudo 1 st order	8.2 x 10 ⁻³ min ⁻¹	180	78	[74]
5	Bi ₂ S ₃ /Bi ₂ WO ₆	1	-	-	150 W Xe lamp (100 mW/cm ²)	Pseudo 1 st order	11.2 x 10 ⁻³ min ⁻¹	180	87	[74]
6	Bi ₂ O ₃	0.5	25/-	7	Solar radiation (70.3 Klux)	-	-	120	75	[41]
7	Bi ₂ O ₃ /TiO ₂	0.5	25/-	7	Solar radiation (70.3 Klux)	-	-	120	92.4	[41]
7	Bi ₂ WO ₆	0.4	10/50	-	50 W energy-saving LED lamp	Pseudo 1 st order	0.0347 min ⁻¹	30	~70	[42]
8	Bi ₂ WO ₆ /Fe ₃ O ₄	0.4	10/50	-	50 W energy-saving LED lamp	Pseudo 1 st order	0.1295 min ⁻¹	30	~99	[42]
9	Bi ₂ WO ₆ /Fe ₃ O ₄ /BC	0.4	10/50	-	50 W energy-saving LED lamp	Pseudo 1 st order	0.1835 min ⁻¹	30	~100	[42]
10	BiFeO ₃	0.5	10/100	8	CFL Bulb (85W, 4150 lumens, oreva)	Pseudo 1 st order	0.0097 min ⁻¹	180	80	[44]
11	Bi ₃ O ₄ Cl	0.5	5/100	-	300 W Xe lamp ($\lambda > 400$ nm)	Pseudo 1 st order	0.0144 min ⁻¹	80	66.8	[75]
12	Bi ₃ O ₄ Cl/LaVO ₄	0.5	5/100	-	300 W Xe lamp ($\lambda > 400$ nm)	Pseudo 1 st order	0.0344 min ⁻¹	80	94.3	[75]
12	Bi ₂ MoO ₆	0.4	5/50	-	300 W xenon lamp	Pseudo 1 st order	0.02978 min ⁻¹	40	46	[45]
13	Cd- Bi ₂ MoO ₆	0.4	5/50	-	300 W xenon lamp	Pseudo 1 st order	0.04839 min ⁻¹	40	~90	[45]
14	Bi ₂ MoO ₆	0.4	*4x10 ⁻⁵ /100	-	150 W tungsten lamp	Pseudo 1 st order	0.0041 min ⁻¹	120	~38	[34]
15	Bi ₂ MoO ₆ -rGO	0.4	*4x10 ⁻⁵ /100	-	150 W tungsten lamp	Pseudo 1 st order	0.0055 min ⁻¹	120	41.2	[34]
16	Bi ₂ MoO ₆ -TiO ₂	0.4	*4x10 ⁻⁵ /100	-	150 W tungsten lamp	Pseudo 1 st order	0.0090 min ⁻¹	120	67.2	[34]
17	Bi ₂ MoO ₆ -rGO-TiO ₂	0.4	*4x10 ⁻⁵ /100	-	150 W tungsten lamp	Pseudo 1 st order	0.0174 min ⁻¹	120	92.3	[34]
18	BiOCl	0.1	5/50	-	300 W xenon lamp	Pseudo 1 st order	0.0021 min ⁻¹	60	~20	[76]
19	BiOCl/NaN ₃ -bO ₃	0.1	5/50	-	300 W xenon lamp	Pseudo 1 st order	0.016 min ⁻¹	60	90	[76]
20	Bi ₂ MoO ₆	1	10/30	-	150 W xenon lamp	Pseudo 1 st order	0.0023 min ⁻¹	100	40	[77]
21	Bi ₄ TaO ₈ Cl-bulk	0.4	20/50	-	5 W white LED (72.9 mW.cm ⁻²)	Pseudo 1 st order	0.00250 min ⁻¹	150	34.9	[78]

Table 2.

(Continued)

S/N	Catalyst	Dosage (g/L)	C_{OFL} (mg/L)/ V_{OFL} (mL)	pH	Light source	Kinetics model	Rate constant	Time (min)	Efficiency (%)	Reference
22	Bi_4TaO_8Cl	0.4	20/50	-	5 W white LED (72.9 mW.cm ⁻²)	Pseudo 1 st order	0.01454 min ⁻¹	150	84.2	[78]
23	Bi_2O_3	0.3	10/100	5	350 W xenon lamp	Pseudo 1 st order	0.01152 min ⁻¹	90	68.6	[79]
24	Bi_2O_7I	0.1	10/100	-	500 W xenon lamp	Pseudo 1 st order	0.0046 min ⁻¹	180	55.1	[43]
25	$Bi_2O_7I/MWCNTs$	0.1	10/100	-	500 W xenon lamp	Pseudo 1 st order	0.0129 min ⁻¹	180	88.2	[43]
Others										
1	$CeTi_2O_6$	0.4	20/50	-	20 W lamp (2300 μ W/cm ²)	Pseudo 1 st order	6.852×10^{-2} min ⁻¹	50	67.9	[80]
2	$Gd_2Ti_2O_7$	0.4	20/50	-	20 W UV lamp (2300 μ W/cm ²)	Pseudo 1 st order	7.8×10^{-3} min ⁻¹	90	50.4	[81]
3	$Gd_2Ti_2O_7/SiO_2$	0.4	20/50	-	20 W UV lamp (2300 μ W/cm ²)	Pseudo 1 st order	1.7×10^{-2} min ⁻¹	90	79.1	[81]
4	$g-C_3N_4$	0.1	15/100	-	Microsolar 300A (100 mW/cm ²)	Pseudo 1 st order	0.0168 min ⁻¹	30	21.1	[82]
5	$NaNbO_3$	0.1	15/100	-	Microsolar 300A (100 mW/cm ²)	Pseudo 1 st order	0.0059 min ⁻¹	30	42.5	[82]
6	$g-C_3N_4/NaNbO_3$	0.1	15/100	-	Microsolar 300A (100 mW/cm ²)	Pseudo 1 st order	0.1745 min ⁻¹	30	99.5	[82]
7	CdS	0.25	10/100	9	85 W Oreva CFL bulb, 4150 lumens, $\lambda = 450-650$ nm	Langmuir-Hinshelwood model	0.02217 min ⁻¹	80	79.5	[83]
8	UiO-66/wood	0.02	10/35	6	Simulated sunlight	Pseudo 1 st order	40.5×10^{-4} min ⁻¹	270	-	[53]
9	UiO-66	0.02	10/35	6	Simulated sunlight	Pseudo 1 st order	33.2×10^{-4} min ⁻¹	270	-	[53]
10	Wood	0.02	10/35	6	Simulated sunlight	Pseudo 1 st order	27.2×10^{-4} min ⁻¹	270	-	[53]
11	$g-C_3N_4$	0.5	10/500	-	500 W xenon lamp	-	-	30	4.9	[71]
12	$Sm_2Ti_2O_7$	-	20/50	-	20 W UV light	Pseudo 1 st order	0.00977 min ⁻¹	70	53.9	[50]
13	$Sm_2Ti_2O_7$ supported on quartz sand	-	20/50	-	20 W UV light	Pseudo 1 st order	0.0220 min ⁻¹	70	78.6	[50]
14	CQDs@CoO/ La_2O_3/NiO TONCs	0.2	20/100	-	-	Pseudo 1 st order	0.036 min ⁻¹	60	91.24	[84]
15	$CoO/La_2O_3/NiO$ TONPs	0.2	20/100	-	-	Pseudo 1 st order	0.018 min ⁻¹	60	69.70	[84]
16	La_2O_3	0.2	20/100	-	-	Pseudo 1 st order	0.007 min ⁻¹	60	34.63	[84]
17	NiO	0.2	20/100	-	-	Pseudo 1 st order	0.005 min ⁻¹	60	27.72	[84]
18	CoO	0.2	20/100	-	-	Pseudo 1 st order	0.003 min ⁻¹	60	17.45	[84]
19	$Sm_2Ti_2O_7$	0.6	20/50	-	20 W UV lamp	Pseudo 1 st order	0.00402 min ⁻¹	150	45.1	[51]
20	$Sm_2Ti_2O_7/NaZSM-5$	0.6	20/50	-	20 W UV lamp	Pseudo 1 st order	0.00769 min ⁻¹	150	70.0	[51]
21	$Sm_2Ti_2O_7/0.3HZSM-5$	0.6	20/50	-	20 W UV lamp	Pseudo 1 st order	0.0163 min ⁻¹	150	93.5	[51]
22	CdS	2	10/50	-	Xenon lamp (400 W, $\lambda > 420$ nm)	Pseudo 1 st order	0.0036 min ⁻¹	90	27.5	[67]
23	MoS_2	2	10/50	-	Xenon lamp (400 W, $\lambda > 420$ nm)	Pseudo 1 st order	0.0031 min ⁻¹	90	25.1	[67]
24	CdS/ MoS_2	2	10/50	-	Xenon lamp (400 W, $\lambda > 420$ nm)	Pseudo 1 st order	0.0075 min ⁻¹	90	61	[67]
25	CdS/ MoS_2/ZnO	2	10/50	-	Xenon lamp (400 W, $\lambda > 420$ nm)	Pseudo 1 st order	0.024 min ⁻¹	90	89	[67]
26	$g-C_3N_4$	0.5	10/100	7	150 W/cm ² tungsten lamp	-	-	70	48.6	[85]
27	$MnWO_4$	0.5	10/100	7	150 W/cm ² tungsten lamp	-	-	70	39.1	[85]

Table 2.
(Continued)

S/N	Catalyst	Dosage (g/L)	C_{OFL} (mg/L) / V_{OFL} (mL)	pH	Light source	Kinetics model	Rate constant	Time (min)	Efficiency (%)	Reference
28	MnWO ₆ @ g-C ₃ N ₄	0.5	10/100	7	150 W/cm ² tungsten lamp	-	-	70	90.4	[85]
29	LaVO ₄	0.5	5/100	-	300 W Xe lamp ($\lambda > 400$ nm)	Pseudo 1 st order	0.0003 min ⁻¹	80	2.5	[75]
30	Co-MIL-53- NH ₂ -BT	0.25	10/20	-	500 W Xe lamp ($\lambda > 400$ nm)	Pseudo 1 st order	0.0392 min ⁻¹	120	99.8	[86]
31	Mn ₂ O ₃ /SiO ₂	0.7	10/20	-	45 W Philips lamp (100 W/m ²)	Pseudo 1 st order	0.0096 min ⁻¹	120	73.2	[87]
32	In ₂ S ₃	-	25/-	4.8	Simulated sunlight	Pseudo 1 st order	2.59×10^{-3} min ⁻¹	120	26.8	[62]
33	In ₂ S ₃ /titanium dioxide nanoarray	-	25/-	4.8	Simulated sunlight	Pseudo 1 st order	5.24×10^{-3} min ⁻¹	120	92.7	[62]
34	Cs _x WO ₃	0.2	**32/50	-	Halogen lamp	Pseudo 1 st order	0.00293 min ⁻¹	150	-	[68]
35	NiCr-LDH	0.5	15/50	-	High-pressure mercury lamp (300 W)	Pseudo 1 st order	0.0063 min ⁻¹	150	-	[88]
36	NiCr-LDH/PSB	0.5	15/50	-	High-pressure mercury lamp (300 W)	Pseudo 1 st order	0.0218 min ⁻¹	150	-	[88]
37	ZnS/MoS ₂ / Bi ₂ WO ₆	0.4	10/50	5	500 W xenon lamp	Pseudo 1 st order	0.01028 min ⁻¹	120	83.7	[89]
38	La ₂ Ti ₂ O ₇	0.6	40/50	-	2300 μ W/cm ² (wavelength 253.7 nm)	Pseudo 1 st order	0.025 min ⁻¹	120	95.0	[46]
39	Gd ₂ Ti ₂ O ₇	0.4	20/50	6.5	20 W UV lamp (2300 μ W/cm ²)	Pseudo 1 st order	1.05×10^{-2} min ⁻¹	30	27.5	[90]
40	Gd ₂ Ti ₂ O ₇ / HZSM-5	0.4	20/50	6.5	20 W UV lamp (2300 μ W/cm ²)	Pseudo 1 st order	3.52×10^{-2} min ⁻¹	30	54.5	[90]
41	WO ₃	0.25	10/200	-	Visible irradiation	Pseudo 1 st order	0.0004 min ⁻¹	-	-	[40]
42	WO ₃	0.25	10/200	-	UV irradiation	Pseudo 1 st order	0.0022 min ⁻¹	-	-	[40]
43	WO ₃	0.25	10/200	-	Solar light irradiation	Pseudo 1 st order	0.0059 min ⁻¹	-	-	[40]
44	NaNbO ₃	0.1	5/50	-	300 W xenon lamp	Pseudo 1 st order	0.002 min ⁻¹	60	-20	[76]
45	MoO ₃	1	20/-	-	150 W xenon lamp	Pseudo 1 st order	-	100	41	[91]
46	C ₃ N ₄	1	20/-	-	150 W xenon lamp	Pseudo 1 st order	-	100	39	[91]
47	Ag/C ₃ N ₄	1	20/-	-	150 W xenon lamp	Pseudo 1 st order	5.3×10^{-3} min ⁻¹	100	47	[91]
48	MoO ₃ /C ₃ N ₄	1	20/-	-	150 W xenon lamp	Pseudo 1 st order	8.46×10^{-3} min ⁻¹	100	54	[91]
49	MoO ₃ /Ag/C ₃ N ₄	1	20/-	-	150 W xenon lamp	Pseudo 1 st order	17.84×10^{-3} min ⁻¹	100	96	[91]
50	CdS	0.25	10/200	-	UV light	Pseudo 1 st order	0.0096 min ⁻¹	120	-	[69]
51	CdS	0.25	10/200	-	Visible light	Pseudo 1 st order	0.0070 min ⁻¹	120	-	[69]
52	C ₃ N ₄	0.5	10/100	6	Xe lamp (PLS-SXE300)	-	-	15	14.6	[72]
53	MoS ₂	1	10/30	-	150 W xenon lamp	Pseudo 1 st order	0.0033 min ⁻¹	100	32	[77]
54	MoS ₂ /Bi ₂ MoO ₆	1	10/30	-	150 W xenon lamp	Pseudo 1 st order	0.0180 min ⁻¹	100	98.4	[77]
55	CeTi ₂ O ₆ (600 °C)	0.4	20/50	-	20 W lamp (2300 μ W/cm ²)	-	-	30	31.2	[52]
56	CeTi ₂ O ₆ (800 °C)	0.4	20/50	-	20 W lamp (2300 μ W/cm ²)	-	-	30	56.7	[52]
57	ZnCdS	-	30/-	-	300 W xenon lamp ($\lambda \geq 420$ nm)	Pseudo 1 st order	0.0130 min ⁻¹	90	75.8	[49]
58	ZnIn ₂ S ₄	-	30/-	-	300 W xenon lamp ($\lambda \geq 420$ nm)	Pseudo 1 st order	0.0138 min ⁻¹	90	78.6	[49]
59	g-C ₃ N ₄	-	30/-	-	300 W xenon lamp ($\lambda \geq 420$ nm)	Pseudo 1 st order	0.0049 min ⁻¹	90	52.5	[49]
60	g-C ₃ N ₄ -vTA	-	30/-	-	300 W xenon lamp ($\lambda \geq 420$ nm)	Pseudo 1 st order	0.0098 min ⁻¹	90	65.4	[49]

Table 2.

(Continued)

S/N	Catalyst	Dosage (g/L)	C_{OFL} (mg/L)/ V_{OFL} (mL)	pH	Light source	Kinetics model	Rate constant	Time (min)	Efficiency (%)	Reference
61	ZnCdS@ZnIn ₂ S ₄	-	30/-	-	300 W xenon lamp ($\lambda \geq 420$ nm)	Pseudo 1 st order	0.0161 min ⁻¹	90	86.4	[49]
62	ZnCdS@ZnIn ₂ S ₄ @g-C ₃ N ₄ -vTA	-	30/-	-	300 W xenon lamp ($\lambda \geq 420$ nm)	Pseudo 1 st order	0.0256 min ⁻¹	90	95.7	[49]
63	Bulk g-C ₃ N ₄	0.5	30/100	-	300 W xenon lamp (PLS-SXE 300/300 UV)	Pseudo 1 st order	0.006 min ⁻¹	-	-	[92]
64	P doped g-C ₃ N ₄	0.5	30/100	-	300 W xenon lamp (PLS-SXE 300/300 UV)	Pseudo 1 st order	0.009 min ⁻¹	90	38.4	[92]
65	MIL-88A(Fe)	0.5	30/100	-	300 W xenon lamp (PLS-SXE 300/300 UV)	Pseudo 1 st order	0.003 min ⁻¹	90	50.6	[92]
66	P-CN100/MIL-88A	0.5	30/100	-	300 W xenon lamp (PLS-SXE 300/300 UV)	Pseudo 1 st order	0.019 min ⁻¹	90	95.6	[92]
67	CoFe ₂ O ₄ @Bi ₂ O ₃ /NiO	0.3	10/100	5	350 W xenon lamp	Pseudo 1 st order	0.03316 min ⁻¹	90	95.2	[79]
68	NiO	0.3	10/100	5	350 W xenon lamp	Pseudo 1 st order	0.00113 min ⁻¹	90	50.5	[79]
69	g-C ₃ N ₄	0.1	20/100	-	PLS-SXE300 Xe lamp	Pseudo 1 st order	0.00214 min ⁻¹	200	-	[93]
70	PCN-222	0.1	20/100	-	PLS-SXE300 Xe lamp	Pseudo 1 st order	0.00361 min ⁻¹	200	-	[93]
71	PCN-222/g-C ₃ N ₄	0.1	20/100	-	PLS-SXE300 Xe lamp	Pseudo 1 st order	0.01448 min ⁻¹	200	95.9	[93]
72	CdS	0.05	10/100	-	Simulated sunlight	Pseudo 2 nd order	2.21 L mmol ⁻¹ min ⁻¹	180	72.9	[64]
73	UiO-67/CdS	0.05	10/100	-	Simulated sunlight	Pseudo 2 nd order	2.21 L mmol ⁻¹ min ⁻¹	180	86.7	[64]
74	rGO/CdS	0.05	10/100	-	Simulated sunlight	Pseudo 2 nd order	2.21 L mmol ⁻¹ min ⁻¹	180	55.4	[64]
75	UiO-67/CdS/rGO	0.05	10/100	-	Simulated sunlight	Pseudo 2 nd order	2.21 L mmol ⁻¹ min ⁻¹	180	91	[64]
76	Fe ₂ O ₃	0.05	10/100	-	Simulated sunlight	Pseudo 2 nd order	2.21 L mmol ⁻¹ min ⁻¹	180	91.4	[64]
77	CdS	0.25	10/200	-	15 W daylight lamp	-	-	240	63	[47]
78	CdS	0.25	10/200	-	Sunlight	-	-	240	89	[47]
79	SWCNTs	0.1	20/50	-	300 W xenon lamp	Pseudo 1 st order	0.008 min ⁻¹	65	38.5	[48]
80	Hematite	0.1	20/50	-	300 W xenon lamp	Pseudo 1 st order	0.014 min ⁻¹	65	56.3	[48]
81	Fe ₂ O ₃ /SWCNTs	0.1	20/50	-	300 W xenon lamp	Pseudo 1 st order	0.019 min ⁻¹	65	67.5	[48]
82	NH ₂ -MIL-125	0.1	20/50	-	300 W xenon lamp	Pseudo 1 st order	0.032 min ⁻¹	65	84.8	[48]
83	Fe ₂ O ₃ /CNTs/MIL	0.1	20/50	-	300 W xenon lamp	Pseudo 1 st order	0.065 min ⁻¹	65	99.3	[48]

erojunctions for better results, notwithstanding, remarkable performances are still being recorded using pristine photocatalysts. Moreover, the interest in the process has led to the development of varieties of novel materials to serve as photocatalysts for the degradation of pollutants. Various categories photocatalysts including titanium-based, zinc-based, bismuth-based, silver-based and others have been used to degrade OFL and their efficiencies are summarized in Table 2.

4.1. Titanium-based photocatalysts

A prominent titanium-based photocatalyst frequently being used in the degradation of pollutants is titanium dioxide (TiO_2) [27]. It is cheap, non-toxic, and has strong oxidising power with long-term sta-

bility against chemical corrosion and photocorrosion [28, 29]. Despite these interesting features, TiO_2 has some limitations. For instance, it has a wide bandgap, which makes it active only upon irradiation with a UV light [27]. Similarly, the rate of chemical reaction with adsorbed species for redox reactions is slower compared to the rate of charge carriers recombination [30]. Fortunately, such challenges are often addressed via doping and formation of heterojunctions.

The impact of doping on the photocatalytic performance of TiO_2 towards degradation of OFL can be demonstrated using the works by Kaur et al. [31] and Bhatia et al. [32]. In the case of Kaur et al. [31], copper doped TiO_2 (Cu-doped TiO_2) was synthesized and used as photocatalyst to degrade OFL. Compared to pristine TiO_2 having a bandgap of 3.51 eV and specific surface area of $16.5\text{ m}^2/\text{g}$, the bandgap and specific sur-

face area for Cu-doped TiO_2 were found to be 2.91 eV and 23.2 m^2/g , respectively. Within 180 min and at pH 7, 72% (rate constant of 0.00447 min^{-1}) of OFL (10 mg/L) was degraded over Cu-doped TiO_2 photocatalyst. Within similar time span, using 10 mg/L OFL at pH 7, 65% (rate constant of 0.00406 min^{-1}) degradation efficiency was recorded using pristine TiO_2 .

The effect of Bi & Ni co-doping on TiO_2 towards photocatalytic degradation of OFL was studied by Bhatia et al. [32]. Under the conditions of pH 3, OFL concentration of 25 g/L, catalyst dosage of 1.5 g/L and using solar irradiation, 86% degradation efficiency was recorded in 6 h using Bi-Ni co-doped TiO_2 , while performance using Degussa TiO_2 is 40%. However, the record under UV irradiation was 42.2% for Bi-Ni co-doped TiO_2 and 76% for Degussa TiO_2 . Besides co-doping, Bhatia et al. [32], also studied the effect pH on the photocatalytic degradation of OFL using Degussa P25. Maximum degradation efficiency (72%) was recorded at pH 3. However, there was systematic decrease in efficiency as the pH rises from 5-10.

The use of TiO_2 based composites such as TiO_2 -rGO and TiO_2 /CdS as photocatalysts to degrade OFL have been reported by Raja et al. [33] and Kaur et al. [34]. The TiO_2 -rGO had narrow band gap and lower photoluminescence intensity than pristine TiO_2 , with photocatalytic degradation efficiency of 21.3 and 28.3% by TiO_2 -rGO and TiO_2 towards OFL antibiotic. The lower band gap and separation of charge carriers contributed to the better performance by TiO_2 -rGO. In the case of TiO_2 /CdS composite, pristine TiO_2 had a band gap of 3.20 eV but decreased to 2.25 eV in the case of TiO_2 /CdS. Similar pattern was observed in the case of photoluminescence. During degradation, 0.45 g/L of TiO_2 and TiO_2 /CdS were able to degrade 65 and 86% of 10 mg/L OFL at pH 7. However, the performances recorded at pH 5 and 9 using TiO_2 /CdS are 74.3 and 77.1%, respectively. Usually, the effect of pH on the degradation efficiency is attributed to the ionization state of the drug and catalyst and/or generated species (e.g. h^+ , OH^-) at low, neutral, or high pH active in the degradation of organic pollutants.

The role of calcination temperatures of 300, 350, 400 and 450 °C on the features and performance of TiO_2 photocatalyst towards OFL degradation was studied by Mushtaq et al. [11]. The performance recorded using TiO_2 photocatalyst calcined at 300, 350, 400 and 450 °C towards OFL degradation were 91, 87, 76 and 64%, respectively. The decrease in degradation efficiency with increase in calcination temperature is attributed to smaller surface area and larger particle size.

4.2. Zinc-based photocatalysts

A very famous zinc-based material used as photocatalyst is ZnO . It is an excellent II-IV semiconducting oxide with an exciton B.E of 60 meV and B.E of 3.37 eV [35]. Due to its high quantum efficiency and non-toxicity, ZnO is often considered as a replacement to TiO_2 [36]. Notwithstanding, ZnO exhibits low efficiency under solar irradiation with rapid recombination of charge carriers. However, both pristine and modified forms of ZnO have been using as photocatalysts to degrade OFL.

For instance, Kaur et al. [37] reported the use of pristine and silver modified ZnO as photocatalyst to degrade OFL in aqueous media. Compared to pristine ZnO which degraded 82% of 10 mg/L OFL within 150 min under solar irradiation, silver modified ZnO degraded 98%. The better performance recorded is due reduction in band gap from 3.23 eV in ZnO to 3.10 eV in silver modified ZnO , in addition to lower recombination rate of charge carriers in silver modified.

In a different study, Chankhanitha et al. [38] studied the effect of different light source on the activity of ZnO and Ag-ZnO towards degradation OFL. The degradation rate of ZnO towards OFL antibiotics was found to be 0.0037, 0.0020 and 0.0414 min^{-1} under UV, visible and natural sunlight. However, Ag-ZnO degraded OFL at the rate of 0.0132, 0.0036 and 0.0444 min^{-1} under UV, visible and natural sunlight. The bet-

ter performance by Ag-ZnO is due to higher crystallinity, greater specific surface area, lower recombination of charge carriers and wider range of light response.

4.3. Silver-based photocatalysts

Various silver-based photocatalysts including AgFeO_2 , Ag_3PO_4 , AgBr and their composites have been reported to facilitate the degradation of OFL in aqueous media. For instance, Piriyanon et al. [39] reported the use of AgBr and AgBr/WO_3 as photocatalysts to degrade OFL. The degradation rates of AgBr towards OFL were found to be 0.0134, 0.0088 and 0.0279 min^{-1} under visible, UV and solar light irradiation. However, the performances using AgBr/WO_3 composite under visible, UV and solar light irradiation were 0.0057, 0.0046 and 0.0436 min^{-1} . Interestingly, under solar light irradiation, AgBr/WO_3 composite displayed much higher performance than AgBr , an effect mainly attributed to the suppression of electron-hole recombination and improved photo absorption. In general, literatures reporting the degradation of OFL using silver-based photocatalysts are still lacking.

4.4. Bismuth-based photocatalysts

Bismuth-based photocatalyst materials such as bismuth oxide (Bi_2O_3), bismuth oxyhalides (such as BiOX , where X represents a halogen), and bismuth-based perovskites are a class of materials that have gained attention in recent years for their potential applications in various photocatalytic processes, including pollutant degradation, and solar energy conversion. Fortunately, there are reasonable studies involving the use of bismuth-based materials as photocatalysts to degrade OFL.

In the studies by Sood et al. [40], pristine Bi_2O_3 and a composite of $\text{Bi}_2\text{O}_3/\text{TiO}_2$ were used as photocatalysts to degrade OFL. Although the wavelength of Bi_2O_3 was 446 nm and that of the optimized $\text{Bi}_2\text{O}_3/\text{TiO}_2$ was 404.6 nm, the degradation efficiency of Bi_2O_3 towards OFL was 75% and that of optimized $\text{Bi}_2\text{O}_3/\text{TiO}_2$ was 92.4% in 120 min. Factors such as small size, high surface area etc. contributed to such performance.

The use of Bi_2WO_6 , $\text{Bi}_2\text{WO}_6/\text{Fe}_3\text{O}_4$ and $\text{Bi}_2\text{WO}_6/\text{Fe}_3\text{O}_4/\text{BC}$ as photocatalysts to degrade OFL have been reported by Wang et al. [41]. The introduction of biochar prevented the agglomeration of Bi_2WO_6 microspheres and Fe_3O_4 nanoparticles. On the other hand, Fe_3O_4 and biochar promoted charge separation and light absorption. Moreover, the $\text{Bi}_2\text{WO}_6/\text{Fe}_3\text{O}_4/\text{BC}$ had the largest adsorption capacity. The degradation rate of Bi_2WO_6 , $\text{Bi}_2\text{WO}_6/\text{Fe}_3\text{O}_4$ and $\text{Bi}_2\text{WO}_6/\text{Fe}_3\text{O}_4/\text{BC}$ towards OFL were found to be 0.0347, 0.1295 and 0.1835 min^{-1} . Another ternary Bi_2MoO_6 -rGO- TiO_2 photocatalyst have been used by Raja et al. [33] to degrade OFL. The degradation rate by Bi_2MoO_6 , Bi_2MoO_6 -rGO, Bi_2MoO_6 - TiO_2 and Bi_2MoO_6 -rGO- TiO_2 were found to be 0.0041, 0.0055, 0.0090 and 0.174 min^{-1} . The synergistic effect between Bi_2MoO_6 - TiO_2 and rGO resulted in the higher performance by Bi_2MoO_6 -rGO- TiO_2 compared to other catalysts.

Multiwalled carbon nanotubes (MWCNTs) have been used by Gao et al. [42] to form MWCNTs/ $\text{Bi}_5\text{O}_7\text{I}$ heterojunction to serve as photocatalyst to degrade OFL. Due to its ability to serve as photoelectrons transformation pathway, MWCNTs-[42]/[43] $\text{Bi}_5\text{O}_7\text{I}$ degraded OFL at the rate of 0.0129 min^{-1} , compared to the rate by $\text{Bi}_5\text{O}_7\text{I}$ which is just 0.0046 min^{-1} .

The role of cadmium doping in the performance of Bi_2MoO_6 towards photocatalytic degradation of OFL have been reported by Xu et al. [44]. Compared to pristine Bi_2MoO_6 with degradation rate 0.02978 min^{-1} , 1% Cd- Bi_2MoO_6 had the best degradation rate of 0.04839 min^{-1} . The introduction of Cd atom lowered the valence band (VB) and widened the bandgap of pristine Bi_2MoO_6 , thereby enhancing its oxidation capacity and suppressing the recombination of charge carriers.

4.5. Others

Aside titanium-based, zinc-based, silver-based and bismuth-based photocatalysts, there are other catalysts that are being used/developed due to the interest in concept of degrading pollutants including OFL. Although degradation efficiency greater than 50% has been recorded using some catalysts including $\text{La}_2\text{Ti}_2\text{O}_7$ [45], CdS [46], $\text{NH}_2\text{-MIL-125}$ [47], $\text{g-C}_3\text{N}_4$ [48] etc. however, modification via doping, formation of heterojunction/composites have resulted in higher efficiencies.

For instance, Zhang et al. [49] reported the use of $\text{Sm}_2\text{Ti}_2\text{O}_7$ supported on quartz sand as photocatalyst to degrade OFL. An efficiency of 53.9% was achieved using pristine $\text{Sm}_2\text{Ti}_2\text{O}_7$, supporting the catalyst on quartz sand resulted in a higher efficiency of 99.2%. Although, the activity of photocatalysts usually reduced after loading on various supports, however, quartz sand is transparent to UV photons and, the lifetime of charge carriers is much longer in $\text{Sm}_2\text{Ti}_2\text{O}_7$ supported on quartz sand than in pristine $\text{Sm}_2\text{Ti}_2\text{O}_7$.

Yang et al. [50] reported the use of $\text{Sm}_2\text{Ti}_2\text{O}_7$, $\text{Sm}_2\text{Ti}_2\text{O}_7/\text{NaZSM-5}$ and $\text{Sm}_2\text{Ti}_2\text{O}_7/\text{HZSM-5}$ as photocatalysts to degrade OFL. HZSM-5 was prepared using NaZSM-5 via treatment with hydrochloric acid. On application, $\text{Sm}_2\text{Ti}_2\text{O}_7$, $\text{Sm}_2\text{Ti}_2\text{O}_7/\text{NaZSM-5}$ and $\text{Sm}_2\text{Ti}_2\text{O}_7/\text{HZSM-5}$ photocatalysts were able to degrade 45.1, 70 and 93.5% OFL in 150 min. The better performance recorded in the case $\text{Sm}_2\text{Ti}_2\text{O}_7/\text{HZSM-5}$ is attributed to the increased hydroxyl radicals production.

The effect of calcination temperature on the photocatalytic performance of porous cerium titanate has been studied by Wang et al. [51]. Initially, the fractions of $\text{Ce}_2\text{Ti}_2\text{O}_6$, CeO_2 , anatase TiO_2 and rutile TiO_2 phases were found to vary with calcination temperature. The adsorption capacity of $\text{Ce}_2\text{Ti}_2\text{O}_6$ was found to drastically decrease with an increase in calcination temperature. However, the photocatalytic efficiency increased from 31.2 to 56.7% when the calcination temperature was raised from 600 to 800 °C. Beyond 800 °C, the material was found to lose its activity.

Interestingly, Shi et al. [52] reported the use of a composite of metal organic frameworks (UiO-66) and wood as a photocatalyst to degrade OFL under sunlight. The performance by UiO-66/wood was inspiring with a degradation rate constant 1.2 and 1.5 times higher than that of UiO-66 and wood. Such result was because, the presence of wood inhibited the recombination of charge carriers, thus improving the photocatalytic efficiency of UiO-66/wood.

5. Conclusion

From the above brief survey, photocatalytic degradation technology is a prominent method employed in the treatment of wastewater contaminated by ofloxacin, and efficient results have been reported using such approach. Notwithstanding, such efficient results are usually obtained after modification of the pristine photocatalysts via doping, formation of composites or construction of heterojunctions. In addition to such modifications, the morphology and surface area of the catalysts were found to have impact on their photocatalytic performance. However, most of the studies reported are results of laboratory scale experiments and not from real wastewater treatment plants. Similarly, studies on the photocatalytic degradation using immobilized composites should be explored for more convenient remediation process.

Acknowledgments

The authors received no financial support for the research, authorship and/or publication of this article.

Conflict of interest

The authors declare that there is no conflict of interest.

REFERENCES

- [1] D.H.K. Reddy, Water Pollution Control Technologies, (2017).
- [2] C. Corada-Fernández, L. Candela, N. Torres-Fuentes, M.G. Pintado-Herrera, M. Paniw, E. González-Mazo, Effects of extreme rainfall events on the distribution of selected emerging contaminants in surface and groundwater: The Guadalete River basin (SW, Spain), *Science of the total environment* 605 (2017) 770-783.
- [3] J. Li, K. Zhang, H. Zhang, Adsorption of antibiotics on microplastics, *Environmental Pollution* 237 (2018) 460-467.
- [4] Y. Chen, T. Lan, L. Duan, F. Wang, B. Zhao, S. Zhang, W. Wei, Adsorptive removal and adsorption kinetics of fluoroquinolone by nano-hydroxyapatite, *PLoS One* 10(12) (2015) e0145025.
- [5] K. He, A.D. Soares, H. Adejumo, M. McDiarmid, K. Squibb, L. Blaney, Detection of a wide variety of human and veterinary fluoroquinolone antibiotics in municipal wastewater and wastewater-impacted surface water, *Journal of pharmaceutical and biomedical analysis* 106 (2015) 136-143.
- [6] R. Dong, G. Yu, Y. Guan, B. Wang, J. Huang, S. Deng, Y. Wang, Occurrence and discharge of pharmaceuticals and personal care products in dewatered sludge from WWTPs in Beijing and Shenzhen, *Emerging Contaminants* 2(1) (2016) 1-6.
- [7] W. Wang, C. Zhai, Y. Peng, K. Chao, A Nondestructive Detection Method for Mixed Veterinary Drugs in Pork Using Line-Scan Raman Chemical Imaging Technology, *Food Analytical Methods* 12(3) (2019) 658-667.
- [8] S. Sharma, A. Bhandari, V. Choudhary, H. Rajpurohit, P. Khandelwal, RP-HPLC method for simultaneous estimation of nitazoxanide and ofloxacin in tablets, *Indian Journal of Pharmaceutical Sciences* 73(1) (2011) 84.
- [9] F. Janos, G.C. Robin, *Analogue-based Drug Discovery*, John Wiley and Sons, 2006.
- [10] J. Sun, M. Song, J. Feng, Y. Pi, Highly efficient degradation of ofloxacin by UV/Oxone/ Co^{2+} oxidation process, *Environmental Science and Pollution Research* 19(5) (2012) 1536-1543.
- [11] K. Mushtaq, M. Saeed, W. Gul, M. Munir, A. Firdous, T. Yousaf, K. Khan, H.M.R. Sarwar, M.A. Riaz, S. Zahid, Synthesis and characterization of TiO_2 via sol-gel method for efficient photocatalytic degradation of antibiotic ofloxacin, *Inorganic and Nano-Metal Chemistry* (2020) 1-7.
- [12] R. Kaur, J.P. Kushwaha, N. Singh, Electro-catalytic oxidation of ofloxacin antibiotic in continuous reactor: evaluation, transformation products and pathway, *Journal of The Electrochemical Society* 166(6) (2019) H250.
- [13] T.-S. Chen, Y.-M. Kuo, J.-L. Chen, K.-L. Huang, Anodic degradation of ofloxacin on a boron-doped diamond electrode, *Int. J. Electrochem. Sci* 8 (2013) 7625-7633.
- [14] M. Peres, M. Maniero, J. Guimaraes, Photocatalytic degradation of ofloxacin and evaluation of the residual antimicrobial activity, *Photochemical & Photobiological Sciences* 14(3) (2015) 556-562.
- [15] O.V. Enick, M.M. Moore, Assessing the assessments: pharmaceuticals in the environment, *Environmental Impact Assessment Review* 27(8) (2007) 707-729.
- [16] B.R. Esposito, M.L. Capobianco, A. Martelli, M.L. Navacchia, L. Pretali, M. Saracino, A. Zanelli, S.S. Emmi, Advanced water remediation from ofloxacin by ionizing radiation, *Radiation Physics and Chemistry* 141 (2017) 118-124.
- [17] N.S. Mishra, R. Reddy, A. Kuila, A. Rani, P. Mukherjee, A. Nawaz, S. Pichiah, A review on advanced oxidation processes for effective water treatment, *Current World Environment* 12(3) (2017) 470.
- [18] S. Varnagiris, M. Urbonavicius, S. Sakalauskaitė, R. Daugelavicius, L. Pranėvicius, M. Lelis, D. Milcius, Floating TiO_2 photocatalyst for efficient inactivation of *E. coli* and decomposition of methylene blue solution, *Science of The Total Environment* 720 (2020) 137600.
- [19] A.G. Leonel, A.A. Mansur, H.S. Mansur, Advanced functional nanostructures based on magnetic iron oxide nanomaterials for water remediation: a review, *Water Research* 190 (2021) 116693.
- [20] S. Lu, C. Lin, K. Lei, B. Wang, M. Xin, X. Gu, Y. Cao, X. Liu, W. Ouyang, M. He, Occurrence, spatiotemporal variation, and ecological risk of antibiotics in the water of the semi-enclosed urbanized Jiaozhou Bay in eastern China, *Water Research* 184 (2020) 116187.
- [21] R.A. Wuana, R. Sha'Ato, S. Iorhen, Aqueous phase removal of ofloxacin using adsorbents from *Moringa oleifera* pod husks, *Advances in Environmental Research* 4(1) (2015) 49-68.
- [22] X. Wang, Y. Zhao, Y. Sun, D. Liu, Highly Effective Removal of Ofloxacin from Water with Copper-Doped ZIF-8, *Molecules* 27(13) (2022) 4312.
- [23] Q. Su, J. Li, H. Yuan, B. Wang, Y. Wang, Y. Li, Y. Xing, Visible-light-driven photocatalytic degradation of ofloxacin by $\text{g-C}_3\text{N}_4/\text{NH}_2\text{-MIL-88B}(\text{Fe})$ heterostruc-

ture: Mechanisms, DFT calculation, degradation pathway and toxicity evolution, *Chemical Engineering Journal* 427 (2022) 131594.

[24] E. Gullberg, S. Cao, O.G. Berg, C. Ilbäck, L. Sandgren, D. Hughes, D.I. Andersson, Selection of resistant bacteria at very low antibiotic concentrations, *PLoS pathogens* 7(7) (2011) e1002158.

[25] J. Xue, S. Ma, Y. Zhou, Z. Zhang, M. He, Facile photochemical synthesis of Au/Pt/g-C₃N₄ with plasmon-enhanced photocatalytic activity for antibiotic degradation, *ACS applied materials & interfaces* 7(18) (2015) 9630-9637.

[26] X.-q. Cao, F. Xiao, Z.-w. Lyu, X.-y. Xie, Z.-x. Zhang, X. Dong, J.-x. Wang, X.-j. Lyu, Y.-z. Zhang, Y. Liang, CuFe₂O₄ supported on montmorillonite to activate peroxymonosulfate for efficient ofloxacin degradation, *Journal of Water Process Engineering* 44 (2021) 102359.

[27] H. Abdullah, M.M.R. Khan, H.R. Ong, Z. Yaakob, Modified TiO₂ photocatalyst for CO₂ photocatalytic reduction: an overview, *Journal of CO₂ Utilization* 22 (2017) 15-32.

[28] X. Wang, Z. Hu, Y. Chen, G. Zhao, Y. Liu, Z. Wen, A novel approach towards high-performance composite photocatalyst of TiO₂ deposited on activated carbon, *Applied Surface Science* 255(7) (2009) 3953-3958.

[29] S. Chen, Y. Liu, Study on the photocatalytic degradation of glyphosate by TiO₂ photocatalyst, *Chemosphere* 67(5) (2007) 1010-1017.

[30] O. Ola, M.M. Maroto-Valer, Review of material design and reactor engineering on TiO₂ photocatalysis for CO₂ reduction, *Journal of Photochemistry and Photobiology C: Photochemistry Reviews* 24 (2015) 16-42.

[31] R. Kaur, A. Kaur, R. Kaur, S. Singh, M.S. Bhatti, A. Umar, S. Baskoutas, S.K. Kansal, Cu-BTC metal organic framework (MOF) derived Cu-doped TiO₂ nanoparticles and their use as visible light active photocatalyst for the decomposition of ofloxacin (OFL) antibiotic and antibacterial activity, *Advanced Powder Technology* 32(5) (2021) 1350-1361.

[32] V. Bhatia, A.K. Ray, A. Dhir, Enhanced photocatalytic degradation of ofloxacin by co-doped titanium dioxide under solar irradiation, *Separation and Purification Technology* 161 (2016) 1-7.

[33] A. Raja, N. Son, M. Kang, Construction of visible-light driven Bi₂MoO₆-rGO-TiO₂ photocatalyst for effective ofloxacin degradation, *Environmental Research* 199 (2021) 11261.

[34] A. Kaur, A. Umar, W.A. Anderson, S.K. Kansal, Facile synthesis of CdS/TiO₂ nanocomposite and their catalytic activity for ofloxacin degradation under visible illumination, *Journal of Photochemistry and Photobiology A: Chemistry* 360 (2018) 34-43.

[35] K. Karthik, A. Raghu, K.R. Reddy, R. Ravishankar, M. Sangeeta, N.P. Shetti, C.V. Reddy, Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants, *Chemosphere* 287 (2022) 132081.

[36] A.M. Saad, M.R. Abukhadra, S.A.-K. Ahmed, A.M. Elzanaty, A.H. Mady, M.A. Betiha, J.-J. Shim, A.M. Rabie, Photocatalytic degradation of malachite green dye using chitosan supported ZnO and Ce-ZnO nano-flowers under visible light, *Journal of environmental management* 258 (2020) 110043.

[37] A. Kaur, G. Gupta, A.O. Ibadon, D.B. Salunke, A. Sinha, S.K. Kansal, A Facile synthesis of silver modified ZnO nanoplates for efficient removal of ofloxacin drug in aqueous phase under solar irradiation, *Journal of Environmental Chemical Engineering* 6(3) (2018) 3621-3630.

[38] T. Chankhanitha, N. Komchoo, T. Senasu, J. Piriyanon, S. Youngme, K. Hemavibool, S. Nanan, Silver decorated ZnO photocatalyst for effective removal of reactive red azo dye and ofloxacin antibiotic under solar light irradiation, *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 626 (2021) 127034.

[39] J. Piriyanon, P. Takhai, S. Patta, T. Chankhanitha, T. Senasu, S. Nijpanich, S. Juabrum, N. Chanlek, S. Nanan, Performance of sunlight responsive WO₃/AgBr heterojunction photocatalyst toward degradation of Rhodamine B dye and ofloxacin antibiotic, *Optical Materials* 121 (2021) 111573.

[40] S. Sood, S.K. Mehta, A. Sinha, S.K. Kansal, Bi₂O₃/TiO₂ heterostructures: synthesis, characterization and their application in solar light mediated photocatalyzed degradation of an antibiotic, ofloxacin, *Chemical Engineering Journal* 290 (2016) 45-52.

[41] Z. Wang, X. Cai, X. Xie, S. Li, X. Zhang, Z. Wang, Visible-LED-light-driven photocatalytic degradation of ofloxacin and ciprofloxacin by magnetic biochar modified flower-like Bi₂WO₆: The synergistic effects, mechanism insights and degradation pathways, *Science of The Total Environment* 764 (2021) 142879.

[42] P. Gao, S. Huang, K. Tao, Z. Li, L. Feng, Y. Liu, L. Zhang, Synthesis of adjustable {312}/{004} facet heterojunction MWCNTs/Bi₂O₃ photocatalyst for ofloxacin degradation: Novel insights into the charge carriers transport, *Journal of Hazardous Materials* 437 (2022) 129374.

[43] G. Gupta, S.K. Kansal, A. Umar, S. Akbar, Visible-light driven excellent photocatalytic degradation of ofloxacin antibiotic using BiFeO₃ nanoparticles, *Chemosphere* 314 (2023) 137611.

[44] J. Xu, Y. Liu, M. Chen, Preparation of Cd-doped Bi₂MoO₆ photocatalyst for efficient degradation of ofloxacin under the irradiation of visible light, *Surfaces and Interfaces* 25 (2021) 101246.

[45] H. Wang, Y. Zhang, Z. Ma, W. Zhang, Role of PEG2000 on sol-gel preparation of porous La₂Ti₂O₇ for enhanced photocatalytic activity on ofloxacin degradation, *Materials Science in Semiconductor Processing* 91 (2019) 151-158.

[46] T. Senasu, N. Ruengchai, S. Khamdon, N. Lorwanishpaisarn, S. Nanan, Hydrothermal Synthesis of Cadmium Sulfide Photocatalyst for Detoxification of Azo Dyes and Ofloxacin Antibiotic in Wastewater, *Molecules* 27(22) (2022) 7944.

[47] H. Alamgholiloo, N.N. Pesyan, A.P. Marjani, Visible-light-responsive Z-scheme α -Fe₂O₃/SWCNT/NH₂-MIL-125 heterojunction for boosted photodegradation of ofloxacin, *Separation and Purification Technology* 305 (2023) 122442.

[48] L. Hou, W. Li, Z. Wu, Q. Wei, H. Yang, Y. Jiang, T. Wang, Y. Wang, Q. He, Embedding ZnCdS@ ZnIn₂S₄ into thiazole-modified g-C₃N₄ by electrostatic self-assembly to build dual Z-scheme heterojunction with spatially separated active centers for photocatalytic H₂ evolution and ofloxacin degradation, *Separation and Purification Technology* 290 (2022) 120858.

[49] T. Zhang, W. Zhang, H. Li, L. Yang, W. Xu, Enhanced photocatalytic degradation of ofloxacin by Sm₂Ti₂O₇ supported on quartz sand, *Materials Science in Semiconductor Processing* 158 (2023) 107354.

[50] L. Yang, K. Wang, J. Yang, W. Zhang, Role of hydrochloric acid treated HZSM-5 zeolite in Sm₂Ti₂O₇/nHZSM-5 composite for photocatalytic degradation of ofloxacin, *Journal of Materials Research and Technology* 9(5) (2020) 10585-10596.

[51] H. Wang, M. Han, Y. Zhou, J. Li, X. Xiao, W. Zhang, Effects of thermal treatment on porous cerium titanate photocatalyst for ofloxacin degradation, *Journal of Nanoscience and Nanotechnology* 19(8) (2019) 5264-5270.

[52] L. Shi, X. Zou, T. Wang, D. Wang, M. Fan, Z. Gong, Sunlight photocatalytic degradation of ofloxacin using UiO-66/wood composite photocatalysts, *Chinese Chemical Letters* 33(1) (2022) 442-446.

[53] L. Wang, N. Liang, H. Li, Y. Yang, D. Zhang, S. Liao, B. Pan, Quantifying the dynamic fluorescence quenching of phenanthrene and ofloxacin by dissolved humic acids, *Environmental pollution* 196 (2015) 379-385.

[54] C. Wang, D. Dong, L. Zhang, Z. Song, X. Hua, Z. Guo, Response of freshwater biofilms to antibiotic florfenicol and ofloxacin stress: role of extracellular polymeric substances, *International journal of environmental research and public health* 16(5) (2019) 715.

[55] I. Michael, E. Hapeshi, C. Michael, D. Fatta-Kassinos, Solar Fenton and solar TiO₂ catalytic treatment of ofloxacin in secondary treated effluents: evaluation of operational and kinetic parameters, *Water research* 44(18) (2010) 5450-5462.

[56] C. El Bekkali, H. Bouyarmane, S. Laasri, M. El Karbane, A. Saoiabi, A. Laghzizil, Sorption and photocatalytic degradation of ciprofloxacin and ofloxacin in aqueous suspensions of TiO₂ and ZnO catalysts, (2017).

[57] Q. Kong, X. He, L. Shu, M.-s. Miao, Ofloxacin adsorption by activated carbon derived from luffa sponge: Kinetic, isotherm, and thermodynamic analyses, *Process Safety and Environmental Protection* 112 (2017) 254-264.

[58] U. Onyenze, O.I. Edozie, Synthesis, Spectroscopic Characterization and Antibacterial Activities of Co (II) Complex of Ofloxacin Drug Mixed with Ascorbic Acid as a Secondary Ligand, *BioScientific Review* 3(3) (2021) 1-12.

[59] E. Hapeshi, A. Achilleos, A. Papaioannou, L. Valanidou, N.P. Xekoukoulotakis, D. Mantzavinos, D. Fatta-Kassinos, Sonochemical degradation of ofloxacin in aqueous solutions, *Water Science and Technology* 61(12) (2010) 3141-3146.

[60] D.N.R. de Sousa, S. Insa, A.A. Mozeto, M. Petrovic, T.F. Chaves, P.S. Fadini, Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites, *Chemosphere* 205 (2018) 137-146.

[61] C. Ding, J. Guo, P. Chen, W. Gan, Z. Yin, S. Qi, M. Zhang, Z. Sun, All-solid-state Z-scheme In₂S₃/CQDs/TiO₂ heterojunction for highly efficient degradation of ofloxacin, *Applied Surface Science* 596 (2022) 153629.

[62] C. Ye, W. Zhang, Y. Liu, Supporting B-TiO₂ on iM16K glass bubbles to prepare B-TiO₂ (x%)/iM16K hollow spheres for ofloxacin degradation, *Ceramics International* 46(8) (2020) 10545-10554.

[63] S. Zhang, Y. Wang, Z. Cao, J. Xu, J. Hu, Y. Huang, C. Cui, H. Liu, H. Wang, Simultaneous enhancements of light-harvesting and charge transfer in UiO-67/CdS/rGO composites toward ofloxacin photo-degradation, *Chemical Engineering Journal* 381 (2020) 122771.

[64] M.S. Kanza Mushtaq, W. Gul, M. Munir, A. Firdous, T. Yousaf, K. Khan, H.M. Rizwan, M.A.R. Sarwar, S. Zahid, Synthesis and characterization of TiO₂ via sol-gel method for efficient photocatalytic degradation of antibiotic ofloxacin, .

[65] T. Chankhanitha, S. Nanan, Visible-light-driven photocatalytic degradation of ofloxacin (OFL) antibiotic and Rhodamine B (RhB) dye by solvothermally grown ZnO/Bi₂MoO₆ heterojunction, *Journal of Colloid and Interface Science* 582

(2021) 412-427.

[66] A.İ. Vaizoğullar, Ternary CdS/MoS₂/ZnO photocatalyst: synthesis, characterization and degradation of ofloxacin under visible light irradiation, *Journal of Inorganic and Organometallic Polymers and Materials* 30(10) (2020) 4129-4141.

[67] W. Ning, Z. Zhao, H. Chang, Z. Gu, B. Zhang, S. Yin, J. Fan, Photocatalytic degradation of ofloxacin by ZnO/Cs_xWO₃ composite synthesized by two-step method: A kinetic study, *Functional Materials Letters* 12(05) (2019) 1950068.

[68] T. Senasu, T. Chankhaniththa, K. Hemavibool, S. Nanan, Visible-light-responsive photocatalyst based on ZnO/CdS nanocomposite for photodegradation of reactive red azo dye and ofloxacin antibiotic, *Materials Science in Semiconductor Processing* 123 (2021) 105558.

[69] J. Jia, Y. Liang, G. Yang, J. Yang, X. Zhang, Z. Zeng, Z. Yang, S. Xu, C. Han, Reinforced AgFeO₂-Bi₄TaO₉Cl pn heterojunction with facet-assisted photocarrier separation for boosting photocatalytic degradation of ofloxacin, *Separation and Purification Technology* (2023) 124333.

[70] R. Chen, S. Ding, N. Fu, X. Ren, Preparation of a g-C₃N₄/Ag₃PO₄ composite Z-type photocatalyst and photocatalytic degradation of Ofloxacin: Degradation performance, reaction mechanism, degradation pathway and toxicity evaluation, *Journal of Environmental Chemical Engineering* 11(2) (2023) 109440.

[71] H. Yin, H. Shi, L. Sun, D. Xia, X. Yuan, Construction of Ag₂O-modified gC₃N₄ photocatalyst for rapid visible light degradation of ofloxacin, *Environmental Science and Pollution Research* 28 (2021) 11650-11664.

[72] G. Gupta, A. Umar, A. Kaur, S. Sood, A. Dhir, S. Kansal, Solar light driven photocatalytic degradation of Ofloxacin based on ultra-thin bismuth molybdenum oxide nanosheets, *Materials Research Bulletin* 99 (2018) 359-366.

[73] S. Adhikari, D.-H. Kim, Synthesis of Bi₂S₃/Bi₂WO₆ hierarchical microstructures for enhanced visible light driven photocatalytic degradation and photoelectrochemical sensing of ofloxacin, *Chemical Engineering Journal* 354 (2018) 692-705.

[74] M. Zhang, J. Xu, M. Chen, Novel Z-scheme LaVO₄/Bi₃O₄Cl heterojunctions for highly efficient degradation of ofloxacin under visible light irradiation, *Journal of Alloys and Compounds* 925 (2022) 166653.

[75] J. Xu, B. Feng, Y. Wang, Y. Qi, J. Niu, M. Chen, BiOCl decorated NaNbO₃ nanocubes: a novel pn heterojunction photocatalyst with improved activity for ofloxacin degradation, *Frontiers in Chemistry* 6 (2018) 393.

[76] S. Mandal, S. Adhikari, S. Choi, Y. Lee, D.-H. Kim, Fabrication of a novel Z-scheme Bi₂MoO₆/GQDs/MoS₂ hierarchical nanocomposite for the photo-oxidation of ofloxacin and photoreduction of Cr (VI) as aqueous pollutants, *Chemical Engineering Journal* 444 (2022) 136609.

[77] J. Jia, Y. Liang, G. Yang, J. Yang, X. Zhang, Z. Xiong, K. Sa, Z. Zeng, Y. Han, Molten-salt-mediated synthesis of Na⁺ doped Bi₄TaO₈Cl nanosheets with exposed {001} facets for enhanced photocatalytic degradation, *Journal of Alloys and Compounds* 932 (2023) 167461.

[78] P. Dhiman, G. Sharma, A.N. Alodhayb, A. Kumar, G. Rana, T. Sithole, Z.A. ALOthman, Constructing a Visible-Active CoFe₂O₄@Bi₂O₃/NiO Nanoheterojunction as Magnetically Recoverable Photocatalyst with Boosted Ofloxacin Degradation Efficiency, *Molecules* 27(23) (2022) 8234.

[79] W. Zhang, J. Yang, C. Li, Role of thermal treatment on sol-gel preparation of porous cerium titanate: characterization and photocatalytic degradation of ofloxacin, *Materials Science in Semiconductor Processing* 85 (2018) 33-39.

[80] W. Zhang, Y. Liu, C. Li, Photocatalytic degradation of ofloxacin on Gd₂Ti₂O₇ supported on quartz spheres, *Journal of Physics and Chemistry of Solids* 118 (2018) 144-149.

[81] D. Zhang, J. Qi, H. Ji, S. Li, L. Chen, T. Huang, C. Xu, X. Chen, W. Liu, Photocatalytic degradation of ofloxacin by perovskite-type NaNbO₃ nanorods modified g-C₃N₄ heterojunction under simulated solar light: Theoretical calculation, ofloxacin degradation pathways and toxicity evolution, *Chemical Engineering Journal* 400 (2020) 125918.

[82] M. Kaur, S.K. Mehta, S.K. Kansal, Visible light driven photocatalytic degradation of ofloxacin and malachite green dye using cadmium sulphide nanoparticles, *Journal of environmental chemical engineering* 6(3) (2018) 3631-3639.

[83] G. Sharma, A. Kumar, P.S. Kumar, A. Alodhayb, Z.A. ALOthman, P. Dhiman, F.J. Stadler, Carbon quantum dots embedded trimetallic oxide: Characterization and photocatalytic degradation of Ofloxacin, *Journal of Water Process Engineering* 48 (2022) 102853.

[84] K. Saravanakumar, G. Mamba, V. Muthuraj, 1D/2D MnWO₄ nanorods anchored on g-C₃N₄ nanosheets for enhanced photocatalytic degradation ofloxacin under visible light irradiation, *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 581 (2019) 123845.

[85] S.-W. Lv, J.-M. Liu, N. Zhao, C.-Y. Li, Z.-H. Wang, S. Wang, Benzothiadiazole functionalized Co-doped MIL-53-NH2 with electron deficient units for enhanced photocatalytic degradation of bisphenol A and ofloxacin under visible light, *Journal of hazardous materials* 387 (2020) 122011.

[86] S. Sharma, S. Basu, Visible-light-induced photocatalytic response of easily recoverable Mn₂O₃/SiO₂ monolith in centimeter-scale towards degradation of ofloxacin: Performance evaluation and product analysis, *Chemosphere* 307 (2022) 135973.

[87] X. Feng, X. Li, B. Su, Photocatalytic degradation performance of antibiotics by peanut shell biochar anchored NiCr-LDH nanocomposites fabricated by one-pot hydrothermal protocol, *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 666 (2023) 131337.

[88] D. Liu, J. Gong, C. Sun, L. Xu, Y. Song, Enhanced photocatalytic activity for degradation of ofloxacin and dye by hierarchical flower-like ZnS/MoS₂/Bi₂WO₆ heterojunction: Synergetic effect of 2D/2D coupling interface and solid sulfide solutions, *Catalysis Communications* 172 (2022) 106546.

[89] W. Zhang, Y. Tao, C. Li, Sol-gel synthesis of Gd₂Ti₂O₇/HZSM-5 composite photocatalyst for ofloxacin degradation, *Journal of Photochemistry and Photobiology A: Chemistry* 364 (2018) 787-793.

[90] S. Adhikari, H.H. Lee, D.-H. Kim, Efficient visible-light induced electron-transfer in z-scheme MoO₃/Ag/C₃N₄ for excellent photocatalytic removal of antibiotics of both ofloxacin and tetracycline, *Chemical Engineering Journal* 391 (2020) 123504.

[91] Q. Wei, H. Yang, W. Li, T. Wang, L. Hou, Z. Wu, Y. Jiang, Efficient photocatalytic H₂ production and ofloxacin degradation based on heterodimensional Z-scheme P-C₃N₄/MIL-88A (Fe) heterojunctions, *Journal of Alloys and Compounds* 920 (2022) 165980.

[92] H. Jia, D. Ma, S. Zhong, L. Li, L. Li, L. Xu, B. Li, Boosting photocatalytic activity under visible-light by creation of PCN-222/g-C₃N₄ heterojunctions, *Chemical Engineering Journal* 368 (2019) 165-174.