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1. Introduction

Water pollution has remained one of the leading global environ-
mental challenges, following the discharge of toxic substances from
various anthropogenic activities [1]. Among the toxic substances being
discharged, a group of contaminants, including pharmaceuticals and
personal care products (PPCPs), contrast media, plasticizers, nanoma-
terials, flame retardants, surfactants, food additives, wood preservatives,
pesticides, hormones etc., have been recognized as significant water pol-
lutants and are termed as emerging contaminants (ECs).

As a class of ECs, PPCPs are also components with a high concen-
tration in wastewater, amongst which antibiotics have received signif-
icant attention due to their impact on the microbial community [2, 3].
Among the antibiotics, fluoroquinolones, including ofloxacin (OFL), are

frequently detected in wastewaters and surface waters [4, 5]. It is also
reported that the techniques currently employed by most wastewater
treatment plants (WWTPs) have limited capacity for the thorough elim-
ination of PPCPs, including OFL from wastewater [6].

Ofloxacin (Table 1) is a second-generation fluoroquinolone anti-
biotic with the chemical formula of C H, FN,O, and chemical name
9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazynyl)-7-oxo-7H-
pyrido-[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid [7, 8]. It was pat-
ented in 1980 and subsequently approved for medical use in 1985 [9,
10]. Currently, OFL is frequently prescribed for the treatment of bron-
chitis, infectious diarrhoea, pneumonia, chlamydia, pelvic inflammatory
disease, eye infections, digestive infections, ear infections, gonorrhoea,
respiratory tract infections, urinary tract infections, gastrointestinal in-
fections, and skin infections [11-13].
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Fig. 1. A schematic illustration of photocatalytic degradation process in a semi-
conductor material.

However, due to its partial metabolism in the body after ingestion,
biological resistance, and the large volume of pharmaceutical wastewa-
ter which is being released untreated, studies have reported the detection
of OFL with different concentrations in hospital wastewater (25,000 —
35,000 ng/L), municipal wastewater treatment plants (53 — 1800 ng/L)
and surface water (10 — 535 ng/L), with a residence time of about 10.6
days [14-16].

Nowadays, the well-known methods commonly employed to remove
persistent organic contaminants, including OFL, are the Advanced Oxi-
dation Processes (AOPs) of which photocatalytic degradation is promi-
nent. These processes involve generating highly reactive and non-selec-
tive free radical species, which can destroy many organic pollutants. The
AOPs are currently categorized as environmentally friendly processes
since they neither result in secondary pollution nor the generation of
excessive hazardous sludge [17-19]. In this regard, the present work re-
viewed variety of photocatalysts used by various researchers in treating
wastewater contaminated by OFL.

2. Exposure effects of OFL on environment and living
organisms.

Residual OFL pose a serious threat to both the ecological environ-
ment and the human health [20]. For instance, the presence of OFL
in water results in high colour with unpleasant odours [10, 21]. It can
results in acute toxicity (when presents in mg/L) and chronic toxicity
(when presents in pg/L) to aquatic organisms [22]. The presence of OFL
may also lead to microbial resistance among pathogens/generation of
superbugs or the death of microorganisms effective in wastewater re-
mediation [14, 21, 23]. For humans, low concentrations of OFL could
be enriched into the human body through the food chain [23]. The de-
velopment of antibiotic resistant bacteria could be a potential harm for
people’s ability to defeat those bacterial strains [24, 25]. After long-term
exposure, OFL may also pose considerable health risk leading to diz-
ziness, abdominal pain and numbness of limbs [26]. Thus, identifying
the proper processes for the thorough and complete elimination of OFL

from wastewater is essential.

3. Mechanism of photocatalytic degradation

The degradation of pollutants via semiconductor photocatalysis is
initiated through illumination of the material (e.g TiO,, ZnO, BiOBr
etc.) with light of sufficient wavelength. This leads to the migration of
electrons from valence band (VB) to conduction band (CB), producing
electron-hole pairs. However, if the challenge of charge pairs recom-
bination is successfully overcomed, the holes (h*) at the valence band
(VB), depending on their oxidizing power could degrade the pollutants
directly or oxidizes water (H,O) to generate hydroxyl radicals (HO") for
subsequent degradation of the pollutant. The electrons at the conduc-
tion band (CB) convert oxygen (O,) to superoxide radical anions (‘O,),
which also degrade pollutants. The schematic illustration of the process
is shown in Figure 1. However, it should be mentioned that the degrada-
tion pathway of organic pollutants including OFL is very subjective, and
the pathway varies greatly from study to study.

Figure 1: A schematic illustration of photocatalytic degradation pro-

cess in a semiconductor material.

4. Performance assessment of photocatalysts in OFL
degradation

Over the years, various researchers have made consistent efforts to
eradicate pollutants including OFL from wastewater via photocatalytic
degradation process. Among the materials reported in the process are
the TiO,-based photocatalysts, ZnO-based photocatalysts, Bi-based pho-
tocatalysts are prominent. Although the photocatalysts are sometimes
being augmented using strategies such as doping and formation of het-

Table 1.
Molecular structure and some physicochemical properties of OFL
Property Reference
Chemical formula CH,FN,O, [54]
CAS number 82419-36-1 [55]
Therapeutic group Antibiotic [56]
Chemical structure [57]
F
‘ OH
(\N N
HJC/N\) O\)\CH
Molecular weight (g/mol) 361.4 [58]
Color White [59]
Melting point 270 -273°C [56]
Solubility in water at 25 °C (mg/ 60 (pH=2-5);4 (pH= [60]
mL) 7); 303 (pH =9.8)

Partition coefficient -0.39 [55]
Dissociation constant 6.10/8.28 [55]
Octanol/water partition coefficient  0.41 (pH 7); 0.33 (pH 7.2); [56]

logk 0.28 (pH 7.3)
Isoelectric constants pKa, =5.97; pKa, = 9.28 [61]
Vapour pressure (mm Hg) 1.55E-0.13 [56]
Henry constant at 25 °C (atm m* 4.98E-0.20 [56]

mole™)
Pharmacokinetic parameters Bioavailability (%) = [56]
70-90
Time of half-life (h) =
5-7.4

Excretion in urine (%)
=80
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Table 2.
List of various photocatalysts and their efficiencies in degrading OFL.
D C Rat - Ti
S/N Catalyst osage OFL pH Light source Kinetics model atecon lr.ne Efficiency (%) Reference
(g/L) (mg/L)/ V., (mL) stant (min)
Titanium-based photocatalysts
1 TiO, 0.5 25/- 7 Solar radiation - - 120 325 [41]
(70.3 Klux)
2 Degussa TiO, 1.5 25/- 3 UV 36 W (365 nm) Pseudo 1+ order 0.0036 min"! 360 72 [33]
3 Degussa TiO, 1.5 25/- 4 UV 36 W (365 nm) - - 360 ~62 [33]
4 Degussa TiO, 1.5 25/- 5 UV 36 W (365 nm) - - 360 ~65 [33]
5 Degussa TiO, 1.5 25/- 6 UV 36 W (365 nm) - - 360 ~58 [33]
6 Degussa TiO, 1.5 25/- 7 UV 36 W (365 nm) - - 360 ~55 [33]
7 Degussa TiO, 1.5 25/- 8 UV 36 W (365 nm) - - 360 ~45 [33]
8 Degussa TiO, 1.5 25/- 9 UV 36 W (365 nm) - - 360 ~39 [33]
9 Degussa TiO, 1.5 25/- 10 UV 36 W (365 nm) - - 360 ~37 [33]
10 Degussa TiO, 0.5 25/- 6 UV 36 W (365 nm) - - 360 ~50 [33]
11 Degussa TiO, 1 25/- 6 UV 36 W (365 nm) - - 360 ~56 [33]
12 Degussa TiO, 1.5 25/- 6 UV 36 W (365 nm) - - 360 72 [33]
13 Degussa TiO, 2 25/- 6 UV 36 W (365 nm) - - 360 ~58 [33]
14 Bi-Ni co-doped 1.5 25/- 3 UV 36 W (365 nm) - - 360 86 [33]
TiO,
15 Titanium diox- - 25/- 4.8 Simulated sunlight Pseudo 1* order 2.45x 103 120 25.5 [62]
ide nanoarray min!
16 TiO, 0.4 *4x10°5/100 - 150 W tungsten lamp Pseudo 1% order 0.0017 min’! 120 213 [34]
17 TiO,-rGO 0.4 *4x10°/100 - 150 W tungsten lamp Pseudo 1*order ~ 0.0024 min™! 120 28.3 [34]
18 TiO,/CdS 45 10/100 - 85 W Oreva bulb with - - 180 86 [35]
4150 lumens intensity
19 B-TiO, 0.4 40/50 - 20 W UV lamp (2300 Pseudo 1*order ~ 0.0248 min’! 180 - [63]
uW/ecm?)
20 B-TiO,(50%)/ 0.4 40/50 - 20 W UV lamp (2300 Pseudo 1*order ~ 0.0233 min 180 - [63]
iM16K uW/em?)
21 TiO, 0.45 10/100 7 85 W Oreva CFLbulb  Pseudo 1*order  0.00406 min? 180 65 [32]
22 Cu-doped TiO, 0.45 10/100 7 85 W Oreva CFL bulb Pseudo 1%order  0.00447 min™! 180 72 [32]
23 P25 0.05 10/100 - Simulated sunlight Pseudo 2"order  2.21 L mmol 180 91.4 [64]
"' min’!
24 TiO, (300 °C) 0.04 20/250 - 100 W LED light with - - 180 90 [65]
output of 40k Lux
25 TiO, (400 °C) 0.04 20/250 - 100 W LED light with - - 180 76 [65]
output of 40k Lux
Zinc-based photocatalysts
1 ZnO 0.25 10/200 - 15 W Panasonic cool Pseudo 1+ order 0.0017 min’! 120 22 [66]
daylight lamp
2 Zn0O-Bi,MoO, 0.25 10/200 - 15 W Panasonic cool Pseudo 1*order 0.0179 min’! 120 94 [66]
daylight lamp
3 ZnO 2 10/50 - Xenon lamp (400 W, L Pseudo 1*order ~ 0.0029 min™! 90 20 [67]
> 420 nm)
4 ZnO/MoS, 2 10/50 - Xenon lamp (400 W, L Pseudo 1*order 0.0062 min’! 90 52 [67]
> 420 nm)
5 ZnO 0.25 10/100 7 65 — 70 Klux Pseudo 1% order 0.0108 min™! 150 82 [38]
6 Silver modified 0.25 10/100 7 65 — 70 Klux Pseudo 1*order ~ 0.0266 min™! 150 98 [38]
ZnO
7 ZnO 0.2 **32/50 - Halogen lamp Pseudo 1* order 0.0031 min’! 150 - [68]
8 Zn0O/2Cs WO, 0.2 **32/50 - Halogen lamp Pseudo 1¥order  0.00624 min™! 150 - [68]
9 ZnO 0.25 10/200 - UV light Pseudo 1+ order 0.0119 min™! 120 - [69]
10 ZnO/CdS 0.25 10/200 - UV light Pseudo 1*order ~ 0.0106 min™! 120 - [69]
11 ZnO 0.25 10/200 - Visible light Pseudo 1*order ~ 0.0021 min! 120 - [69]
12 ZnO/CdS 0.25 10/200 - Visible light Pseudo 1*order ~ 0.0086 min™! 120 - [69]
13 ZnO 0.25 10/200 - Mercury lamp (125 W)  Pseudo 1*order 0.0037 min’! 180 - [39]
14 Ag-ZnO 0.25 10/200 - Mercury lamp (125 W)  Pseudo 1*order 0.0132 min™! 180 - [39]
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Table 2.
(Continued)
D C Rat - Ti
S/N Catalyst osage OFL pH Light source Kinetics model atecon “_ne Efficiency (%) Reference
(g/L) (mg/L)/ V., (mL) stant (min)
Silver-based photocatalysts
1 AgFeO, 0.4 10/50 - 5 W white LED 73 Pseudo 2" order 0.00735 60 22.5 [70]
mW.cm? (PCX 50 B) L.mg"'.min"!
2 AgFeO,- 0.4 10/50 - 5 W white LED 73 Pseudo 2" order 0.10638 60 37.5 [70]
Bi,TaO,Cl mW.cm? (PCX 50 B) L.mg"'.min"!
3 Ag,PO, 0.5 10/500 - 500 W xenon lamp - - 30 70.3 [71]
4 AgPO, /g-CN, 0.5 10/500 - 500 W xenon lamp - - 10 71.9 [71]
5 AgBr 0.25 10/200 - Visible irradiation Pseudo 1+ order 0.0134 min™! - - [40]
6 AgBr/WO, 0.25 10/200 - Visible irradiation Pseudo 1* order 0.0057 min’! 240 68 [40]
7 AgBr 0.25 10/200 - UV irradiation Pseudo 1+ order 0.0088 min! - - [40]
8 AgBr/WO, 0.25 10/200 - UV irradiation Pseudo 1+ order 0.0046 min"! 240 55 [40]
9 AgBr 0.25 10/200 - Solar light irradiation Pseudo 1*order  0.0279 min! - - [40]
10 AgBr/WO, 0.25 10/200 - Solar light irradiation Pseudo 1%order ~ 0.0436 min! 240 85 [40]
11 Ag,0-C\N, 0.5 10/100 6 Xe lamp (PLS- - - 5 99.1 [72]
SXE300)
Bismuth-based photocatalysts
1 Bi,TaO,Cl 0.4 10/50 - 5 W white LED 73 Pseudo 2™ order 0.00721 60 29.7 [70]
mW.cm? (PCX 50 B) L.mg".min"!
2 Bi,MoO, 1 10/100 - Sunlight (55 — 65 Lux) - - 90 71 [73]
Bi,MoO, 0.25 10/200 - 15 W Panasonic cool Pseudo 1+ order 0.0092 min! 120 82 [66]
daylight lamp
3 Bi,S, 1 - - 150 W Xe lamp (100 Pseudo 1+ order 1.3x 107 180 21 [74]
mW/cm?) min”!
4 Bi,WO 1 - - 150 W Xe lamp (100 Pseudo 1+ order 8.2x10? 180 78 [74]
mW/cm?) min’!
5 Bi,S,/Bi,WO 1 - - 150 W Xe lamp (100 Pseudo 1+ order 11.2x 103 180 87 [74]
mW/cm?) min’!
6 Bi,0, 0.5 25/- 7 Solar radiation (70.3 - - 120 75 [41]
Klux)
7 Bi,0,/TiO, 0.5 25/- 7 Solar radiation (70.3 - - 120 92.4 [41]
Klux)
7 Bi,WO 0.4 10/50 - 50 W energy-saving Pseudo 1%order  0.0347 min"! 30 ~70 [42]
LED lamp
8 Bi,WO/Fe,O, 0.4 10/50 - 50 W energy-saving Pseudo 1*order 0.1295 min’! 30 ~99 [42]
LED lamp
9 Bi,WO/Fe,0,/ 0.4 10/50 - 50 W energy-saving Pseudo 1+ order 0.1835 min’! 30 ~100 [42]
BC LED lamp
10 BiFeO, 0.5 10/100 8 CFL Bulb (85W, 4150 Pseudo 1+ order 0.0097 min’! 180 80 [44]
lumens, oreva)
11 Bi,0,Cl 0.5 5/100 - 300 W Xe lamp (A > Pseudo 1+ order 0.0144 min’! 80 66.8 [75]
400 nm)
12 Bi,0,Cl/ 0.5 5/100 - 300 W Xe lamp (A > Pseudo 1*order ~ 0.0344 min™! 80 94.3 [75]
Lavo, 400 nm)
12 Bi,MoO, 0.4 5/50 - 300 W xenon lamp Pseudo 1*order  0.02978 min™! 40 46 [45]
13 Cd- Bi,MoO, 0.4 5/50 - 300 W xenon lamp Pseudo 1*order  0.04839 min™! 40 ~90 [45]
14 Bi,MoO, 0.4 *4x10/100 - 150 W tungsten lamp Pseudo 1+ order 0.0041 min™! 120 ~38 [34]
15 Bi,MoO-rGO 0.4 *4x10°/100 - 150 W tungsten lamp Pseudo 1*'order ~ 0.0055 min™! 120 41.2 [34]
16 Bi,MoO-TiO, 0.4 *4x10°5/100 - 150 W tungsten lamp Pseudo 1% order 0.0090 min™! 120 67.2 [34]
17 Bi,MoO-rGO- 0.4 *4x10/100 - 150 W tungsten lamp Pseudo 1*'order  0.0174 min’! 120 92.3 [34]
TiO,
18 BiOCl 0.1 5/50 - 300 W xenon lamp Pseudo 1* order 0.0021 min’! 60 ~20 [76]
19 BiOCIl/NaN- 0.1 5/50 - 300 W xenon lamp Pseudo 1+ order 0.016 min™! 60 90 [76]
b0,
20 Bi,MoO 1 10/30 - 150 W xenon lamp Pseudo 1*'order ~ 0.0023 min™! 100 40 [77]
21 Bi,TaO- 0.4 20/50 - 5 W white LED (72.9 Pseudo 1*order  0.00250 min™! 150 349 [78]

(Cl-bulk

mW.cm?)
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Table 2.
(Continued)
D C Rat - Ti
S/N Catalyst osage OFL pH Light source Kinetics model atecon lr.ne Efficiency (%) Reference
(g/L) (mg/L)/ V., (mL) stant (min)
22 Bi,TaO,Cl 0.4 20/50 - 5 W white LED (72.9 Pseudo 1%order  0.01454 min™! 150 84.2 [78]
mW.cm?)
23 Bi,O, 0.3 10/100 5 350 W xenon lamp Pseudo 1*'order  0.01152 min! 90 68.6 [79]
24 Bi,0,1 0.1 10/100 - 500 W xenon lamp Pseudo 1* order 0.0046 min’! 180 55.1 [43]
25 Bi,0,l/ 0.1 10/100 - 500 W xenon lamp Pseudo 1*order 0.0129 min™! 180 88.2 [43]
MWCNTs
Others
1 CeTi, O, 0.4 20/50 - 20 W lamp (2300 uW/  Pseudo 1% order 6.852x 102 50 67.9 [80]
cm?) min’!
2 Gd,Ti,0, 0.4 20/50 - 20 W UV lamp (2300 Pseudo 1+ order 7.8x10° 90 50.4 [81]
pW/em?) min’!
3 Gd,Ti,0./SiO. 0.4 20/50 - 20 W UV lamp (2300 Pseudo 1+ order 1.7x 102 90 79.1 [81]
uW/em?) min’!
4 g-CN, 0.1 15/100 - Microsolar 300A (100 Pseudo 1+ order 0.0168 min’! 30 21.1 [82]
mW/cm?)
5 NaNbO, 0.1 15/100 - Microsolar 300A (100 Pseudo 1*order ~ 0.0059 min! 30 425 [82]
mW/cm?)
6 g-CN/ 0.1 15/100 - Microsolar 300A (100 Pseudo 1*order 0.1745 min’! 30 99.5 [82]
NaNbO, mW/cm?)
7 Cds 0.25 10/100 9 85 W Oreva CFL Langmuir-Hin- ~ 0.02217 min™! 80 79.5 [83]
bulb, 4150 lumens, shelwood model
A =450-650 nm
8 Ui0-66/wood 0.02 10/35 6 Simulated sunlight Pseudo 1*order 40.5x 10° 270 - [53]
“min’!
9 Ui0-66 0.02 10/35 6 Simulated sunlight Pseudo 1+ order 332x 10 270 - [53]
“min’!
10 Wood 0.02 10/35 6 Simulated sunlight Pseudo 1+ order 272x 100 270 - [53]
“min’!
11 g-CN, 0.5 10/500 - 500 W xenon lamp - - 30 4.9 [71]
12 Sm,Ti,0, - 20/50 - 20 W UV light Pseudo 1*order ~ 0.00977 min™! 70 53.9 [50]
13 Sm,Ti,0, - 20/50 - 20 W UV light Pseudo 1+ order 0.0220 min’! 70 78.6 [50]
supported on
quartz sand
14 CQDs@Co0O/ 0.2 20/100 - - Pseudo 1+ order 0.036 min’! 60 91.24 [84]
La,0,/NiO
TONCs
15 CoO/La 0,/ 0.2 20/100 - - Pseudo 1% order 0.018 min’! 60 69.70 [84]
NiO TONPs
16 La 0, 0.2 20/100 - - Pseudo 1 order 0.007 min! 60 34.63 [84]
17 NiO 0.2 20/100 - - Pseudo 1+ order 0.005 min! 60 27.72 [84]
18 CoO 0.2 20/100 - - Pseudo 1+ order 0.003 min™! 60 17.45 [84]
19 Sm,Ti,0, 0.6 20/50 - 20 W UV lamp Pseudo 1*order  0.00402 min™! 150 45.1 [51]
20 Sm,Ti,0,/ 0.6 20/50 - 20 W UV lamp Pseudo 1% order  0.00769 min™! 150 70.0 [51]
NaZSM-5
21 Sm,Ti,0,/ 0.6 20/50 - 20 W UV lamp Pseudo 1*order ~ 0.0163 min™! 150 93.5 [51]
0.3HZSM-5
22 CdS 2 10/50 - Xenon lamp (400 W, L Pseudo 1% order 0.0036 min’! 90 27.5 [67]
> 420 nm)
23 MoS, 2 10/50 - Xenon lamp (400 W, L Pseudo 1+ order 0.0031 min’! 90 25.1 [67]
> 420 nm)
24 CdS/Mos, 2 10/50 - Xenon lamp (400 W, L Pseudo 1+ order 0.0075 min’! 90 61 [67]
> 420 nm)
25 CdS/MosS,/ 2 10/50 - Xenon lamp (400 W, L Pseudo 1+ order 0.024 min’! 90 89 [67]
ZnO > 420 nm)
26 g-CN, 0.5 10/100 7 150 W/cm? tungsten - - 70 48.6 [85]
lamp
27 MnWO, 0.5 10/100 7 150 W/cm? tungsten - - 70 39.1 [85]

lamp
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Table 2.
(Continued)
D C Rat - Ti
S/N Catalyst osage OFL pH Light source Kinetics model atecon “_ne Efficiency (%) Reference
(g/L) (mg/L)/ V., (mL) stant (min)
28 MnWO,@ 0.5 10/100 7 150 W/em? tungsten - - 70 90.4 [85]
g-CN, lamp
29 LaVoO, 0.5 5/100 - 300 W Xe lamp (A > Pseudo 1+ order 0.0003 min™! 80 2.5 [75]
400 nm)
30 Co-MIL-53- 0.25 10/20 - 500 W Xe lamp (A > Pseudo 1*order ~ 0.0392 min! 120 99.8 [86]
NH,-BT 400 nm)
31 Mn,0,/SiO, 0.7 10/20 - 45 W Philips lamp Pseudo 1* order 0.0096 min’! 120 73.2 [87]
(100 W/m?)
32 In,S, - 25/- 4.8 Simulated sunlight Pseudo 1% order 2.59x 103 120 26.8 [62]
min’
33 In,S /titani- - 25/- 4.8 Simulated sunlight Pseudo 1+ order 5.24x 103 120 92.7 [62]
um dioxide min’'
nanoarray
34 Cs WO, 0.2 **32/50 - Halogen lamp Pseudo 1*order  0.00293 min™! 150 - [68]
35 NiCr-LDH 0.5 15/50 - High-pressure mercury ~ Pseudo 1%order ~ 0.0063 min’! 150 - [88]
lamp (300 W)
36 NiCr-LDH/ 0.5 15/50 - High-pressure mercury ~ Pseudo 1+ order 0.0218 min’! 150 - [88]
PSB lamp (300 W)
37 ZnS/MoS,/ 0.4 10/50 5 500 W xenon lamp Pseudo 1*order  0.01028 min™! 120 83.7 [89]
Bi,WO,
38 La,Ti,0, 0.6 40/50 - 2300 pW/cm? (wave- Pseudo 1+ order 0.025 min™! 120 95.0 [46]
length 253.7 nm)
39 Gd,Ti,0, 0.4 20/50 6.5 20 W UV lamp (2300 Pseudo 1+ order 1.05 x 102 30 27.5 [90]
pW/em?) min’!
40 Gd,Ti,0./ 0.4 20/50 6.5 20 W UV lamp (2300 Pseudo 1+ order 3.52x 102 30 54.5 [90]
HZSM-5 uW/em?) min’!
41 WO, 0.25 10/200 - Visible irradiation Pseudo 1% order 0.0004 min’! - - [40]
42 WO, 0.25 10/200 - UV irradiation Pseudo 1*'order  0.0022 min™! - - [40]
43 WO, 0.25 10/200 - Solar light irradiation Pseudo 1+ order 0.0059 min’! - - [40]
44 NaNbO, 0.1 5/50 - 300 W xenon lamp Pseudo 1+ order 0.002 min™! 60 ~20 [76]
45 MoO, 1 20/- - 150 W xenon lamp Pseudo 1+ order - 100 41 [91]
46 CN, 1 20/- - 150 W xenon lamp Pseudo 1* order - 100 39 [91]
47 Ag/CN, 1 20/- - 150 W xenon lamp Pseudo 1+ order 53x 103 100 47 [91]
min’!
48 MoO,/C,N, 1 20/- - 150 W xenon lamp Pseudo 1+ order 8.46x 107 100 54 [91]
min’!
49 MoO,/Ag/C\N, 1 20/- - 150 W xenon lamp Pseudo 1* order 17.84 x 107 100 96 [91]
min’!
50 Cds 0.25 10/200 - UV light Pseudo 1%order ~ 0.0096 min! 120 - [69]
51 Cds 0.25 10/200 - Visible light Pseudo 1*'order  0.0070 min™' 120 - [69]
52 CN, 0.5 10/100 6 Xe lamp (PLS- - - 15 14.6 [72]
SXE300)
53 MoS, 1 10/30 - 150 W xenon lamp Pseudo 1+ order 0.0033 min’! 100 32 [77]
54 MoS,/Bi,MoO, 1 10/30 - 150 W xenon lamp Pseudo 1+ order 0.0180 min™! 100 98.4 [77]
55 CeTi, O (600 0.4 20/50 - 20 W lamp (2300 pW/ - - 30 312 [52]
°C) cm?)
56 CeTi, O, (800 0.4 20/50 - 20 W lamp (2300 pW/ - - 30 56.7 [52]
°C) om’)
57 ZnCdS - 30/- - 300 W xenon lamp (A Pseudo 1+ order 0.0130 min™! 90 75.8 [49]
>420 nm)
58 ZnIn,S, - 30/- - 300 W xenon lamp (A Pseudo 1* order 0.0138 min! 90 78.6 [49]
> 420 nm)
59 g-CN, - 30/- - 300 W xenon lamp (A Pseudo 1+ order 0.0049 min’! 90 52.5 [49]
>420 nm)
60 g-C)N,-vTA - 30/- - 300 W xenon lamp (A Pseudo 1*'order ~ 0.0098 min™! 90 65.4 [49]

>420 nm)
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Table 2.
(Continued)
D C Rat - Ti
S/N Catalyst osage OFL pH Light source Kinetics model atecon lr.ne Efficiency (%) Reference
(g/L) (mg/L)/ V., (mL) stant (min)
61 ZnCdS@ - 30/- - 300 W xenon lamp (A Pseudo 1+ order 0.0161 min’! 90 86.4 [49]
ZnIn,S, >420 nm)
62 ZnCdS@ - 30/- - 300 W xenon lamp (A Pseudo 1+ order 0.0256 min’! 90 95.7 [49]
ZnIn,S,@g- > 420 nm)
C,N,-vTA
63 Bulk g-C,N, 0.5 30/100 - 300 W xenon lamp Pseudo 1+ order 0.006 min™! - - [92]
(PLS-SXE 300/300
uv)
64 P doped 0.5 30/100 - 300 W xenon lamp Pseudo 1+ order 0.009 min™! 90 38.4 [92]
g-CN, (PLS-SXE 300/300
uv)
65 MIL-88A(Fe) 0.5 30/100 - 300 W xenon lamp Pseudo 1% order 0.003 min™! 90 50.6 [92]
(PLS-SXE 300/300
uv)
66 P-CN100/MIL- 0.5 30/100 - 300 W xenon lamp Pseudo 1+ order 0.019 min™! 90 95.6 [92]
88A (PLS-SXE 300/300
uv)
67 CoFe,0,@ 0.3 10/100 5 350 W xenon lamp Pseudo 1*order  0.03316 min™! 90 95.2 [79]
Bi,0,/NiO
68 NiO 0.3 10/100 5 350 W xenon lamp Pseudo 1%order ~ 0.00113 min™! 90 50.5 [79]
69 g-CN, 0.1 20/100 - PLS-SXE300 Xe lamp ~ Pseudo 1*order  0.00214 min' 200 - [93]
70 PCN-222 0.1 20/100 - PLS-SXE300 Xe lamp  Pseudo 1*order  0.00361 min’! 200 - [93]
71 PCN-222/g- 0.1 20/100 - PLS-SXE300 Xe lamp  Pseudo 1*order  0.01448 min? 200 95.9 [93]
CN,
72 Cds 0.05 10/100 - Simulated sunlight Pseudo 2"order  2.21 L mmol 180 72.9 [64]
"' min”!
73 Ui0-67/CdS 0.05 10/100 - Simulated sunlight Pseudo 2"order  2.21 L mmol 180 86.7 [64]
" min"!
74 rGO/CdS 0.05 10/100 - Simulated sunlight Pseudo 2"order  2.21 L mmol 180 554 [64]
"' min”!
75 Ui0-67/CdS/ 0.05 10/100 - Simulated sunlight Pseudo 2*order  2.21 L mmol 180 91 [64]
rGO ! min’!
76 Fe,0, 0.05 10/100 - Simulated sunlight Pseudo 2"order  2.21 L mmol 180 914 [64]
"' min’!
77 Cds 0.25 10/200 - 15 W daylight lamp - - 240 63 [47]
78 Cds 0.25 10/200 - Sunlight - - 240 89 [47]
79 SWCNTs 0.1 20/50 - 300 W xenon lamp Pseudo 1+ order 0.008 min™! 65 38.5 [48]
80 Hematite 0.1 20/50 - 300 W xenon lamp Pseudo 1+ order 0.014 min™! 65 56.3 [48]
81 Fe, 0,/ 0.1 20/50 - 300 W xenon lamp Pseudo 1+ order 0.019 min™! 65 67.5 [48]
SWCNTs
82 NH,-MIL-125 0.1 20/50 - 300 W xenon lamp Pseudo 1*order 0.032 min’! 65 84.8 [48]
83 Fe,0,/CNTs/ 0.1 20/50 - 300 W xenon lamp Pseudo 1% order 0.065 min™! 65 99.3 [48]
MIL

erojunctions for better results, notwithstanding, remarkable performanc-
es are still being recorded using pristine photocatalysts. Moreover, the
interest in the process has led to the development of varieties of novel
materials to serve as photocatalysts for the degradation of pollutants.
Various categories photocatalysts including titanium-based, zinc-based,
bismuth-based, silver-based and others have been used to degrade OFL

and their efficiencies are summarized in Table 2.
4.1. Titanium-based photocatalysts
A prominent titanium-based photocatalyst frequently being used

in the degradation of pollutants is titanium dioxide (TiO,) [27]. It is
cheap, non-toxic, and has strong oxidising power with long-term sta-

bility against chemical corrosion and photocorrosion [28, 29]. Despite
these interesting features, TiO, has some limitations. For instance, it has
a wide bandgap, which makes it active only upon irradiation with a UV
light [27]. Similarly, the rate of chemical reaction with adsorbed species
for redox reactions is slower compared to the rate of charge carriers
recombination [30]. Fortunately, such challenges are often addressed via
doping and formation of heterojunctions.

The impact of doping on the photocatalytic performance of TiO, to-
wards degradation of OFL can be demonstrated using the works by Kaur
et al. [31] and Bhatia et al. [32]. In the case of Kaur et al. [31], copper
doped TiO, (Cu-doped TiO,) was synthesized and used as photocatalyst
to degrade OFL. Compared to pristine TiO, having a bandgap of 3.51
eV and specific surface area of 16.5 m*g, the bandgap and specific sur-
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face area for Cu-doped TiO, were found to be 2.91 eV and 23.2 m%/g,
respectively. Within 180 min and at pH 7, 72% (rate constant of 0.00447
min™) of OFL (10 mg/L) was degraded over Cu-doped TiO, photocat-
alyst. Within similar time span, using 10 mg/L OFL at pH 7, 65% (rate
constant of 0.00406 min') degradation efficiency was recorded using
pristine TiO,.

The effect of Bi & Ni co-doping on TiO, towards photocatalytic deg-
radation of OFL was studied by Bhatia et al. [32]. Under the conditions
of pH 3, OFL concentration of 25 g/L, catalyst dosage of 1.5 g/L and
using solar irradiation, 86% degradation efficiency was recorded in 6 h
using Bi-Ni co-doped TiO,, while performance using Degussa TiO, is
40%. However, the record under UV irradiation was 42.2% for Bi-Ni
co-doped TiO, and 76% for Degussa TiO,. Besides co-doping, Bhatia et
al. [32], also studied the effect pH on the photocatalytic degradation of
OFL using Degussa P25. Maximum degradation efficiency (72%) was
recorded at pH 3. However, there was systematic decrease in efficiency
as the pH rises from 5-10.

The use of TiO, based composites such as TiO,-rGO and TiO,/CdS
as photocatalysts to degrade OFL have been reported by Raja et al. [33]
and Kaur et al. [34]. The TiO,-rGO had narrow band gap and lower
photoluminescence intensity than pristine TiO,, with photocatalytic deg-
radation efficiency of 21.3 and 28.3% by TiO,-rGO and TiO, towards
OFL antibiotic. The lower band gap and separation of charge carriers
contributed to the better performance by TiO,-rGO. In the case of TiO,/
CdS composite, pristine TiO, had a band gap of 3.20 eV but decreased
to 2.25 eV in the case of TiO,/CdS. Similar pattern was observed in the
case of photoluminescence. During degradation, 0.45 g/L of TiO, and
TiO,/CdS were able to degrade 65 and 86% of 10 mg/L OFL at pH 7.
However, the performances recorded at pH 5 and 9 using TiO,/CdS are
74.3 and 77.1%, respectively. Usually, the effect of pH on the degrada-
tion efficiency is attributed to the ionization state of the drug and catalyst
and/or generated species (e.g. h', ‘OH) at low, neutral, or high pH active
in the degradation of organic pollutants.

The role of calcination temperatures of 300, 350, 400 and 450 °C on
the features and performance of TiO, photocatalyst towards OFL deg-
radation was studied by Mushtaq et al. [11]. The performance recorded
using TiO, photocatalyst calcined at 300, 350, 400 and 450 °C towards
OFL degradation were 91, 87, 76 and 64%, respectively. The decrease
in degradation efficiency with increase in calcination temperature is at-
tributed to smaller surface area and larger particle size.

4.2. Zinc-based photocatalysts

A very famous zinc-based material used as photocatalyst is ZnO. It is
an excellent II-IV semiconducting oxide with an exciton B.E of 60 meV
and B.E 0 3.37 eV [35]. Due to its high quantum efficiency and non-tox-
icity, ZnO is often considered as a replacement to TiO, [36]. Notwith-
standing, ZnO exhibits low efficiency under solar irradiation with rapid
recombination of charge carriers. However, both pristine and modified
forms of ZnO have been using as photocatalysts to degrade OFL.

For instance, Kaur et al. [37] reported the use of pristine and sil-
ver modified ZnO as photocatalyst to degrade OFL in aqueous media.
Compared to pristine ZnO which degraded 82% of 10 mg/L OFL within
150 min under solar irradiation, silver modified ZnO degraded 98%. The
better performance recorded is due reduction in band gap from 3.23 eV
in ZnO to 3.10 eV in silver modified ZnO, in addition to lower recombi-
nation rate of charge carriers in silver modified.

In a different study, Chankhanittha et al. [38] studied the effect of
different light source on the activity of ZnO and Ag-ZnO towards degra-
dation OFL. The degradation rate of ZnO towards OFL antibiotics was
found to be 0.0037, 0.0020 and 0.0414 min"' under UV, visible and nat-
ural sunlight. However, Ag-ZnO degraded OFL at the rate of 0.0132,
0.0036 and 0.0444 min™' under UV, visible and natural sunlight. The bet-

ter performance by Ag-ZnO is due to higher crystallinity, greater specific
surface area, lower recombination of charge carriers and wider range of
light response.

4.3. Silver-based photocatalysts

Various silver-based photocatalysts including AgFeO,, Ag,PO,,
AgBr and their composites have been reported to facilitate the degrada-
tion of OFL in aqueous media. For instance, Piriyanon et al. [39] report-
ed the use of AgBr and AgBr/WO, as photocatalysts to degrade OFL.
The degradation rates of AgBr towards OFL were found to be 0.0134,
0.0088 and 0.0279 min"' under visible, UV and solar light irradiation.
However, the performances using AgBr/WO, composite under visible,
UV and solar light irradiation were 0.0057, 0.0046 and 0.0436 min™'. In-
terestingly, under solar light irradiation, AgBr/WO, composite displayed
much higher performance than AgBr, an effect mainly attributed to the
suppression of electron-hole recombination and improved photo absorp-
tion. In generals, literatures reporting the degradation of OFL using sil-
ver-based photocatalysts are still lacking.

4.4. Bismuth-based photocatalysts

Bismuth-based photocatalyst materials such as bismuth oxide
(Bi,0,), bismuth oxyhalides (such as BiOX, where X represents a hal-
ogen), and bismuth-based perovskites are a class of materials that have
gained attention in recent years for their potential applications in various
photocatalytic processes, including pollutant degradation, and solar en-
ergy conversion. Fortunately, there are reasonable studies involving the
use of bismuth-based materials as photocatalysts to degrade OFL.

In the studies by Sood et al. [40], pristine Bi,O, and a composite of
Bi,0,/TiO, were used as photocatalysts to degrade OFL. Although the
wavelength of Bi,0, was 446 nm and that of the optimized Bi,0,/TiO,
was 404.6 nm, the degradation efficiency of Bi,O, towards OFL was 75%
and that of optimized Bi,0,/TiO, was 92.4% in 120 min. Factors such
as small size, high surface area etc. contributed to such performance.

The use of Bi,WO,, Bi,WO/Fe,O, and Bi,WO /Fe,O,/BC as photo-
catalysts to degrade OFL have been reported by Wang et al. [41]. The
introduction of biochar prevented the agglomeration of Bi,WO, micro-
spheres and Fe, O, nanoparticles. On the other hand, Fe,O, and biochar
promoted charge separation and light absorption. Moreover, the Bi, WO/
Fe,0,/BC had the largest adsorption capacity. The degradation rate of Bi-
,WO,, Bi,WO/Fe,O, and Bi,WO/Fe,O0,/BC towards OFL were found
to be 0.0347, 0.1295 and 0.1835 min™'. Another ternary Bi,MoO,-rGO-
TiO, photocatalyst have been used by Raja et al. [33] to degrade OFL.
The degradation rate by Bi,MoO,, Bi,M0OrGO, Bi,MoO-TiO, and
Bi,M00-rGO-TiO, were found to be 0.0041, 0.0055, 0.0090 and 0.174
min". The synergistic effect between Bi,MoO-TiO, and rGO resulted
in the higher performance by Bi,MoO-rGO-TiO, compared to other
catalysts.

Multiwalled carbon nanotubes (MWCNTs) have been used by Gao
et al. [42] to form MWCNTs/Bi O, heterojunction to serve as photo-
catalyst to degrade OFL. Due to its ability to serve as photoelectrons
transformation pathway, MWCNTs-[42]/[43] Bi,O,l degraded OFL at
the rate of 0.0129 min™', compared to the rate by Bi O, which is just
0.0046 min™'.

The role of cadmium doping in the performance of Bi,MoO, towards
photocatalytic degradation of OFL have been reported by Xu et al. [44].
Compared to pristine Bi,MoO, with degradation rate 0.02978 min™', 1%
Cd- Bi,MoO, had the best degradation rate of 0.04839 min™. The in-
troduction of Cd atom lowered the valence band (VB) and widened the
bandgap of pristine Bi,MoO,, thereby enhancing its oxidation capacity

and suppressing the recombination of charge carriers.
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4.5. Others

Aside titanium-based, zinc-based, silver-based and bismuth-based
photocatalysts, there are other catalysts that are being used/developed
due to the interest in concept of degrading pollutants including OFL. Al-
though degradation efficiency greater than 50% has been recorded using
some catalysts including La,Ti,O, [45], CdS [46], NH,-MIL-125 [47],
g-C,N, [48] etc. however, modification via doping, formation of hetero-
junction/composites have resulted in higher efficiencies.

For instance, Zhang et al. [49] reported the use of Sm,Ti,O, sup-
ported on quartz sand as photocatalyst to degrade OFL. An efficiency of
53.9% was achieved using pristine Sm,Ti,O., supporting the catalyst on
quartz sand resulted in a higher efficiency of 99.2%. Although, the activ-
ity of photocatalysts usually reduced after loading on various supports,
however, quartz sand is transparent to UV photons and, the lifetime of
charge carriers is much longer in Sm,Ti,O, supported on quartz sand
than in pristine Sm, Ti,0..

Yang et al. [50] reported the use of Sm,Ti,0,, Sm,Ti,0./NaZSM-5
and Sm,Ti,O,/HZSM-5 as photocatalysts to degrade OFL. HZSM-5 was
prepared using NaZSM-5 via treatment with hydrochloric acid. On ap-
plication, Sm,Ti,0,, Sm,Ti,0./NaZSM-5 and Sm,Ti,0.,/HZSM-5 photo-
catalysts were able to degrade 45.1, 70 and 93.5% OFL in 150 min. The
better performance recorded in the case Sm,Ti,O,/HZSM-5 is attributed
to the increased hydroxyl radicals production.

The effect of calcination temperature on the photocatalytic perfor-
mance of porous cerium titanate has been studied by Wang et al. [51].
Initially, the fractions of Ce,Ti,O,, CeO,, anatase TiO, and rutile TiO,
phases were found to vary with calcination temperature. The adsorption
capacity of Ce,Ti,O, was found to drastically decrease with an increase
in calcination temperature. However, the photocatalytic efficiency in-
creased from 31.2 to 56.7% when the calcination temperature was raised
from 600 to 800 °C. Beyond 800 °C, the material was found to lose its
activity.

Interestingly, Shi et al. [52] reported the use of a composite of metal
organic frameworks (UiO-66) and wood as a photocatalyst to degrade
OFL under sunlight. The performance by UiO-66/wood was inspiring
with a degradation rate constant 1.2 and 1.5 times higher than that of
Ui0-66 and wood. Such result was because, the presence of wood inhib-
ited the recombination of charge carriers, thus improving the photocata-
lytic efficiency of UiO-66/wood.

5. Conclusion

From the above brief survey, photocatalytic degradation technology
is a prominent method employed in the treatment of wastewater contam-
inated by ofloxacin, and efficient results have been reported using such
approach. Notwithstanding, such efficient results are usually obtained
after modification of the pristine photocatalysts via doping, formation of
composites or construction of heterojunctions. In addition to such modi-
fications, the morphology and surface area of the catalysts were found to
have impact on their photocatalytic performance. However, most of the
studies reported are results of laboratory scale experiments and not from
real wastewater treatment plants. Similarly, studies on the photocatalytic
degradation using immobilized composites should be explored for more
convenient remediation process.
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