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A B S T R A C T A R T I C L E  I N F O R M A T I O N

Micro/nanomotors (MNMs) are very unique in performing tasks and performance according to their scale. These 
small and versatile motors are known as promising tools in various applications. The ultimate goal is the appli-
cation of MNMs in various fields, which is considered an exciting technological challenge. Chemical fuel is very 
reliable for the movement of MNMs. Among the various movement mechanisms that exist for these engines, 
bubble propulsion is one of the most important, and many engines have been investigated using this propulsion 
mechanism. Magnetic motors are another category of motors that move by applying a magnetic driving force and 
their direction of movement can be adjusted by the applied magnetic field. One of the most important challenges 
in the field of MNMs is the use of controlled and efficient engines, which requires the manufacturing and careful 
design of these engines. By incorporating of two or more engines, it is possible to benefit from the advantages 
of each one, and at the same time, the limitations of each one are removed and the possibility of controlling the 
movement of the engine is provided. In this article, we review the methods of manufacturing and characterizing 
MNMs which consume chemical fuel and move by bubble propulsion and also have magnetic properties and can 
propel by applying a magnetic field. These engines can reduce the common fuel used in chemical engines by ap-
plying magnetic driving force and switching their operation in response to changing conditions. Due to continuous 
innovations in this field, MNMs will profoundly impact the field of Nanorobotics.
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1. Introduction

Ever since Feynman gave his speech in 1959 entitled «There’s plenty 
of room at the bottom», a lot of research has been done on manipulation 
and production on very small scales. The 2016 Nobel Prize in Chemistry 
was awarded for the study of molecular machines, which encouraged 
the advancement of molecular motors. In 2002, Whitesides’s [1] team 
created the first artificial motor on a centimeter-scale that can operate 
autonomously using hydrogen peroxide (H2O2) as fuel. This contribut-
ed significantly to the advancement of catalytic micro and nanomotors 
(MNMs). Later in 2004, it was announced that the size of bimetallic 
motors comprised of platinum and gold segments had been effectively 
reduced to the micrometer-level. The energy efficiency and particular 
surface area increase with decreasing size [2].

In the discussion of small-scale motors, in addition to the size factor, 
the shape and geometric structure of the engines have a significant im-
pact on how the motors move and function. Therefore, various structures 
with different functions and applications were fabricated. MNMs and 
other subtypes of them, such as helical MNMs [3], Janus MNMs [4], 
nanowires [5], and microtubes [5, 6], have been successfully fabricated 
Fig.1 . In addition to various shapes of MNMs, propulsion and motion 
control of them have become increasingly the focus of research. Janus 
motors are based on the Janus particles, which are asymmetric structures 
with different physical or chemical properties. In 1991, De Gennes [7] 
mentioned “Janus” in his Nobel lecture with the definition of particles 
with two diverse hemispheres. 

As mentioned, the structure of MNMs affects their motion, on the 
other hand, the methods of fabricating MNMs are different according 
to their structure, and each MNM is able to perform a specific mission 
according to its composition and mode of operation. The characteriza-
tion and fabrication methods of MNMs still need to be greatly improved 
for long-term utilization. In the past years, researchers in different dis-
ciplines used two methods, top-down and bottom-up, to fabricate and 
develop MNMs. Fabrication techniques consist of physical vapor depo-
sition (conventional physical vapor deposition or glancing angle depo-
sition) [8, 9], electrochemical deposition (bipolar or template-assisted) 
[10], assembly [11], lithography [12], and others.

Producing MNMs with low cost and large-scale is very significant 
because it has an important impact on the possibility of using MNMs 
[13, 14].

Based on how they are created, MNMs can be divided into three 
categories: The MNMs may be entirely artificial, hybrid MNMs (which 
include natural and artificial components), or naturally occurring in or-
ganic compounds [15]. Artificial engines (self-propelled MNMs) have 
the capacity to transform energy from various sources into autonomous 
motion. These sources include ultrasonic waves [13], electric or magnet-
ic fields [16], light [17], and chemical fuel [18].

According to the various reports available in the published literature, 
several movement mechanisms have been proposed to describe the pro-
pulsion of MNMs [19]. The materials used in the structure of MNMs 
must be such that they react to the external input energy and this is a 
function of the desired movement mechanism. The progress of process 
engineering and material science in the past decades has had a signifi-
cant impact on the number of contributions in the field of small-scale 
robotics. These impacts aim to use and combine the best materials for 
the propulsion of MNMs, and strategies for fabrication were considered 
and developed [20]. On the other hand, propulsion mechanisms have 
an effect on the selection of methods and routes for the fabrication of 
MNMs [20].

Self-electrophoresis [21], interfacial tension gradients [22], bubble 
propulsion [23], and diffusiophoresis [24]are among the physical and 
chemical mechanisms proposed to explain the propulsion behavior of 
MNMs. Propulsion in bubble MNMs takes place through bubbles, these 
bubbles are produced either through redox reactions that lead to the 
spontaneous production of gas or through chemical reactions that lead 
to the degradation of a fuel such as hydrogen peroxide or a catalysis.

Bubble propulsion is one of the most significant motion mechanisms 
of MNMs. Many successful cases of MNMs whose propulsion mecha-
nism is through the bubble recoil mechanism which produced from cat-
alytic reactions have been reported in the literature [25]. Long-term du-
rability and precise motion control make the Bubble-propelled MNMs 
with favorable biocompatibility and powerful driving force suitable can-
didates for medical applications. Most of these MNMs simultaneously 
use external energy sources such as magnetic field, acoustic wave, elec-
tric field, and light to boost propulsion and control movement [25, 26].

Magnetic-propelled MNMs have drawn careful attention Due to 
their fuel-free actuation, remote controllability, and safety for cells and 
tissues, especially in the biomedical and pharmaceutical industries. 
Magnetic movement can be applied to nanomotors in two ways: By the 
transfer of magnetic torque caused by the oscillation or rotation of ex-
ternal magnetic fields or by applying a magnetic field gradient to induce 
aligned magnetophoretic motion in the same direction. This magnetic 
unique MNMs are favorable in the future biomedical and pharmaceuti-
cal applications because to the ease of fabrication techniques, the unre-
stricted choice of materials, and the successful motion control. Due to 
its intrinsic directionality, a magnetic field can align these particles and 
enable directional navigation. The most popular technique for remotely 
initiating and controlling the swarming activity of micro/nanoparticles 
with excellent biocompatibility is magnetism [27-30].

Even though the nanotechnology community is supporting this new 
initiative, there are still many challenges to overcome before functional 
MNMs are developed. Other serious challenges, such as how to control 
their motion and how they can be successfully driven, exist in addition 
to the obvious challenge of manufacturing such small devices. The de-
gree of interest in the topic over the past 15 years has steadily gained 
momentum, as can be shown by the number of publications over this 
time period. Researchers from a variety of universities and scientific 
backgrounds have started tackling these challenging questions [34][31]. 
It is worthwhile to invest in this field of study because the mobility and 

Fig. 1. Some different structures of MNMs. (a) spherical (b) tubular (c) helical 
(d) wire and (e) Janus.

Fig. 2. Mechanisms of MNMS propulsion.
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control of motion of MNMs will have significant effects on future tech-
nologies [28–34].

By combining the propulsion mechanisms of bubble and magnetic, 
one can benefit from the advantages of both methods. In this review, we 
focus on various techniques/strategies for the fabrication and character-
ization of MNMs which drive using magnetic fields and bubble propul-
sion mechanisms.

2. Nano/micro motors

Any motor needs a power source to generate movement in order to 
function. MNMs are a category of miniaturized human-made motors 
that can transform chemical or external energy into mechanical motion.  
Most of the reported MNMs are fuel-driven. The chemical energy need-
ed for motility in Nano-and micro-scale motors is often produced by a 
catalyst through the decomposition of fuel. 

The catalytic decomposition of aqueous hydrogen peroxide (H2O2) 
has received considerable attention. H2O2 is rapidly decomposed to wa-
ter and oxygen in the presence of an appropriate catalyst, often one con-
taining platinum (Pt). 

Typically, the fuel used to propel catalytic MNMs is based on H2O2 
and N2H4, which are incompatible with biological systems. Several solu-
tions, including remote-controlled motors or hybrid motors, have been 
proposed to address this issue. The hybrid motor was developed to com-
bine the advantages of both motors. Fuel-free motors or remotely guided 
motors are efficient and simple; thus, they have been widely researched, 
allowing for opening up new opportunities in a variety of fields, that 
enable temporal, and precise spatial control. Multiple mechanisms, such 
as interfacial gradient propulsion, diffusiophoresis, self-electrophoresis, 
and bubble propulsion have been proposed to explain the autonomous 
mobility of fueled MNMs Fig. 2 . Magnetism, light, electricity, organism 
and ultrasound are the most significant external forces utilized to power 
MNMs [32, 33].

• Diffusiophoresis propulsion: Self-diffusiophoresis frequently refers 
to the propulsion of MNMs in the gradient of product concentration sur-
rounding MNMs as a consequence of an asymmetric chemical reaction 
[36]. The asymmetries of catalytic MNMs play a significant role in de-
scribing motion [8]. As the collected decomposition products approach 
a critical threshold, which local concentration is significant and the prod-
uct begins to diffuse away, the motor moves away from the catalyst. 
The self-diffusiophoresis propulsion could cause a particle to move at a 
speed of 1–10 μm/s [34]. Because of the high ionic content of biological 
fluids, the self-diffusiophoresis technique is not an effective choice for 
the fabrication of MNMs to be used in drug delivery systems [35, 36].

• Self-electrophoresis propulsion: Self-electrophoresis propulsion 
is typically owing to an electric gradient produced within asymmetric 
bimetallic conducting rods. In general, the system operates as kind of a 
self-contained electrochemical cell, with one metallic end functioning 
as the anode while the other is the cathode. It should be noticed that 
the highly ionic quality of biofluids might influence the self-electro-
phoresis mechanism, rendering them unsuitable to be utilized as drug 
delivery MNMs. This mechanism would include the flow of protons 

and electrons within the particle, functioning as a galvanic cell with a 
short circuit. Self-electrophoresis is frequently accompanied by further 
plausible mechanisms [37]. The first self-electrophoresis MNMs were 
created by Mallouk’s team [38] utilizing Ag/Pt bisegment nanorods to 
display directional motion behaviors toward the platinum end at a speed 
of approximately 10 μm/s [38].

• Ultrasound-driven motors: The application of ultrasound to drive 
MNMs is a relatively new development. Small-scale objects, including 
biological structures, may be efficiently manipulated using arbitrary 
wave, single beams, traveling waves, or standing waves fields. Ultra-
sound can be employed as an external stimulation to drive MNMs, hav-
ing the advantage of non-contact. The usage of standing waves in vivo 
is difficult because standing waves cannot be dependably established in 
living organisms. Although the use of standing waves for the propulsion 
of MNMs is extremely advantageous, the application of standing waves 
in vivo is going to be difficult [39-41].

• Electrically driven motors: Electrical fields are another kind of 
propulsion that is garnering interest from the MNMs community. DC 
and AC electric fields, and also heterogeneous and homogeneous fields, 
can be utilized to move MNMs. Velev et al. [42] discovered that milli-
meter-scale semiconductor diodes can move autonomously when con-
fronted with an external alternating electric field. The electro-osmotic 
flow focused all around diodes caused the diodes to move in a particular 
direction. Some more studies attempted to microminiaturize these di-
odes for additional biomedical applications using a membrane template 
growth method [43]. 

• Light-driven motors: Light can be utilized to power MNMs as an 
alternative source of power. In this regard, different wavelengths of 
light, including infrared, visible, and ultraviolet, have been employed. 
Furthermore, the driving mechanisms of MNMs utilizing various light 
sources are often distinct [37]. As light-powered MNMs, many photoac-
tive materials, including photochromic, photothermal, and photocatalyt-
ic materials, have been utilized. Photoactive materials (In the presence 
of light) undergo photoisomerization, photothermal conversion, and 
photochemical processes to convert light energy into chemical energy 
or heat energy. In 2015, Guan et al. [44] utilized a simple method of 
dry spinning to prepare single-component TiO2 microtubes. The motion 
speed of these microtubes can be adjusted easily within 0.2 s under UV 
irradiation. The ability to use light to drive fuel-free motors is immense-
ly appealing, but without robust motors that can deal with the body’s 
limited ability to absorb light across a broad spectrum, they will be lim-
ited to invasive hospital procedures [45].

• Organism-driven: Organism-driven motors are pseudo-fuel-free, 
and require no additional fuel for propulsion. In natural systems, certain 
microbes and cells, such as bacteria and sperm, may travel independent-
ly. Therefore, numerous researchers studied the feasibility of integrating 
them as motors into MNMs [46, 47].

MNMs with bubble propulsion mechanisms combined with a mag-
netic field as an external source of power source are prevalent, powerful, 
and extremely efficient and we will discuss them further [48].

Fig. 3. (a) PVD technique and (b) GLAD technique.

Fig. 4. Fabrication of asymmetric structure of MNMs through bipolar electro-
chemical deposition method.
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3. Bubble propulsion

In the field of MNMs driving, bubble propulsion is likely the most 
studied mechanism. It results from the fuel decomposition spontaneous-
ly by a catalyst. The decomposition releases micron-sized gas bubbles 
from the MNMs surface that propels the motors away from the cata-
lyst. Nucleation, formation of bubble, grow, and then detachment are 
the process at which the gaseous products would undergo. Eventual-
ly, the fluid is expelled away from the MNMs, creating the transient 
driving force necessary to succeed in dealing with the vicious force for 
self-propulsion. Continuous microbubble production and flow provide a 
steady driving force which is required for self-propulsion. In most of the 
researches, MNMs move away from the directions of bubble ejection. 
If well-controlled, the MNMs’ motion can be aligned with the bubble 
ejections [49, 50].

The Bubble propulsion approach is the most commonly employed 
propulsion mechanism for MNMs, with applications including electro-
chemical analytical sensing, analytical sensing, drug delivery, the killing 
of pathogenic bacteria, and water purification. It has been demonstrated 
that bubble-propelled autonomous MNMs promote effective fluid trans-
port and mixing, hence increasing the conventional chemical process 
efficiency. The microbubbles produced significantly improved localized 
convection and mass transport, resulting in a greater sensitivity [51-53].

Pt is a costly noble metal and the most prevalent catalytic compo-
nent. Platinum decomposes hydrogen peroxide to water and oxygen. 

The reduction of H2O2 occurs in the gold segment: 
H2O2 + 2H+ + 2e- → 2H2O
In the platinum segment, the oxidation of the fuel O2 occurs: 
H2O2 → O2 + 2H+ + 2e-
Other substances, such as silver and manganese oxide, are able to 

catalyze the decomposition of hydrogen peroxide to produce power. Al-
ternative eco-friendly substances, including as Mg [54], Zn, Al [55], and 
Fe3 react with acids and water to produce H2 bubbles for propulsion. 
Some chemical agents, for instance NaHCO3 (reaction with C4H6O3), 
NaBH4 (reaction with 4-nitrophenol pollutant), and KMnO4 (reaction 
with H2O2), also generate bubbles to drive MNMs. Some precious met-
als, such as the iridium and gold could be utilized as engine components, 
and also be employed for MNMs purposes. Iridium could be utilized to 
catalyze the decomposition of hydrazine for bubble propelled or selfdif-
fusiophoresis MNMs. Palladium particles utilize as a catalyzer in order 
to degradation of 4-nitrophenol contaminant in a rolled-up microtubular 
motor and NaBH4 uses as the reductant. [56-58].

By decomposing water to H2 bubbles, the first water powered 
MNMs demonstrated. In the biomedical field the choice of fuel is cru-
cial for expanding the vast uses of MNMs. Microparticles comprised of 
CaCO3 and TXA can swim through blood by CO2 bubble propulsion. 
This technique typically demands extremely cytotoxic fuels such as io-
dine, bromine, hydrazine, and hydrogen peroxide preventing their usage 
in biological applications. Recently, however, alternative fuels such as 
glucose or calcium carbonate (CaCO3) and tranexamic acid (TXA) have 
been reported. [59-61]. 

In 2004, Sen et al. [2] utilized H2O2 as a fuel to drive (Pt/Au) na-
norods produced using an electrochemical method, demonstrating that 
catalytic reactions can provide the driving forces for MNMs.

Wang et al. [62] produced the first case of Zn-based tubular micro-
motors driven by H2 bubbles in acidic medium without any extra chem-
ical fuel, which were manufactured using electro-synthesized mothered. 
In 2013 [63], Magnesium-based micromotors powered by the Magne-
sium–water reaction fabricated through ion sputtering technique. San-
chez et al. [60] created a remarkable high-performance microjet engine 
with bubble-driven motions exceeding 10 mm/s at physiological tem-
peratures, their work demonstrated that bubble propulsion is a very pow-
erful method to driving MNMs. The speed of the shell motor pushed by 
bubbles was significantly greater in comparison with solid and spherical 
motors of comparable size. The speed of MNMs depends on the ionic 
strength of the medium. As the salt concentration increases, the MNMs’s 
speed reduces because a high ionic strength led to greater bubble size 
and fewer bubbles [41]. Surfactants play a significant role in the im-
proved motion of bubble-propelled MNMs during the motion process 
by lowering interfacial free energy [64-66]. The motion behaviors of 
MNMs are also affected by environmental factors such as pH values, 
temperature, light, and other solutes.

In addition to the material biosafety, it’s necessary to consider multi-
functionality throughout the motors’ design and construction. Self-pro-
pulsion is a very appealing method, but it has several limitations, such as 
a lack of directionality. Incorporating magnetic elements (such as Cobalt 
[67] and iron (III) oxide) into MNMs allows for accurate motion control 
[68, 69]. 

4. Magnetic MNMs

Magnetic fields are undoubtedly the most adopted form of propul-
sion energy for MNMs. In order to respond to the external field, mag-
netic materials are necessary. The majority of magnetically propelled 
MNMs fabricated from superparamagnetic, ferromagnetic, or ferromag-
netic materials, either in form of polymer composites [70], metal, or 
alloys. Ni, Co, and Fe are widely used ferromagnetic materials, while 
Fe2O3 and Fe3O4 are regularly utilized superparamagnetic materials [71, 
72].

Using electromagnetic or magnets coils, magnetic fields applied in 
the form of gradients, oscillation, or rotation. Utilizing gradients, which 
permit the application of forces to structures, is a relatively easy method 
of manipulating magnetic MNMs. Additionally, oscillating and rotat-
ing magnetic fields that rotate and oscillate have been utilized to pro-
pel magnetic MNMs. Considering that the magnetic materials show a 
magnetization axis that is mostly induced by the shape which is called 
shape anisotropy, rotation of the structures is possible by aligning this 
preferential magnetization axis synchronously. This takes place with the 
applied oscillating or rotating magnetic field which is created by the 

Fig. 5. magnetic and bubble propelled MNM .

Fig. 6. schematic of the experimental workplace for actuating and visualizing 
magnetic MNMs.
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exerted magnetic force. By regulating the frequency of the oscillating or 
rotating magnetic fields, magnetic small-scale swimmers speed con-
trolling up to a particular frequency value (step-out frequency) is pos-
sible [73].

Wu et al. [74] demonstrated that hinged structures constituted of 
a metallic tail connected to a magnetic head can swim along helical 
path by applying purely rotating magnetic fields. The structures replicate 
the helical klinotactic motion of particular bacteria and cells, like sper-
matozoa. This method is particularly promising for biomedical applica-
tions due to the diversity of ways that magnetic fields could be applied as 
well as their biocompatibility (low or null interaction with organic com-
pound over a broad range of frequency values and magnetic field) [75].

Movement of NMNs through the blood [76] as well as NMNs with 
Janus structure in the intestine and stomach have been reported [77-80]. 
Another application of NMNs is their use in drug or DNA delivery. In 
recent studies, the functionality of NMNs inside living cells has been 
discussed [81, 82].

In addition to magnetic field and magnetic materials which can affect 
the performance of magnetic MNMs, there are some more factors affect-
ing the motion of magnetic MNMs, for instance fluid ionic strength, vis-
cosity, surface wettability, and geometric shape. Helical MNMs is one of 
the most investigated small-scale motor architectures which numerous 
studies have utilized rotating magnetic fields to examine its locomotion 
[83, 84] and Wang and colleagues [85] demonstrated a second remark-
able propulsion mechanism with nanowire-based architectures like the 
locomotion of fish.

MNMs are made of many materials and methods to provide their 
needed functionality for example Magdanz et al. [86] have recently fab-
ricated sperm-template MNMs and investigated segmented magneti-
zation for its impact on the propulsion.  The possible use of magnetic 
MNMs in biomedical applications is the subject of considerable research 
and it is needed to be more investigated [48].

5. Fabrication and characterization

5.1. Fabrication 

In this section, we describe the fabrication techniques for MNMs and 
provide examples for each technique. Physical vapor deposition (PVD) 
Fig. 3.a [87] is a collection of vacuum deposition techniques in which a 
liquid or solid material surface is evaporated in a vacuum environment 
and deposited on a substrate in a thin layer. Thermal evaporation and 
sputtering are the most popular PVD techniques. In the PVD process, 
the targeted material is transferred and deposited on the surface of the 
substrate in a vacuum atmosphere. PVD is effective anywhere durable, 
pure, and extremely thin layers are required for coating [88].

Vapor deposition method results in the creation of a high pure layer 
and the ability to control the layer’s structure, which is advantageous 
over alternative layering techniques for several applications. Although 
PVD is regarded a rather expensive technology, its use enables the fab-
rication of MNMs with several layers of materials with varying prop-
erties, making it one of the most common techniques for fabricating 
MNMs with catalytic and magnetic capabilities properties [19, 89, 90].

Fig. 3.b depicts the shape of the Glancing Angle Deposition (GLAD) 
[91] process, which is one of the techniques for producing thin layers. 
During deposition, the angle between the steam source and the sub-
strate can be altered, enabling the formation of layers with varying thick-
nesses and geometries. Fe/Pt Janus Micromotors were manufactured by 
Chung-Seop Lee et al. [92]. As the basic particles, Fe0 microspheres are 
utilized with a 50-nm-thick Pt layer coating. The Fe0/Pt micromotors 
were reusable and were magnetically guided to the target pollutants us-
ing an external magnetic field. Fe0 acted as a Fenton catalyst for the deg-

radation of organic contaminants, while the hemispheric platinum layer 
catalytically degraded H2O2 into H2O and O2. PVD is a common method 
in order to metal decoration of MNMs, it is nonselective, expensive, 
and is not economically available for all metals [93].

It has been demonstrated that electrochemical deposition is a high-
ly effective method for creating nanomaterials. Wet template synthesis 
employing alternative layer-by-layer assembly of proteins in a po-
rous polycarbonate membrane is a useful technique for the development 
of well-designed soft protein MNMs [94]. Midway through the 1990s, 
Charles Martin created the membrane-template electrosynthesis tech-
nique, which has since become one of the most used electrochemical 
techniques for producing nanostructures. The process has proven to be 
incredibly effective for the fabrication of nanowires with a wide vari-
ety of chemical compositions, including semiconductor [95], polymeric 
[94], and metallic [96] nanowires. Initially, a thin metal coating is de-
posited on one side of the template to generate the electrical contact 
and working electrode. The membrane is subsequently assembled in 
an electrochemical cell. The cell has open pores facing a plating bath 
in order to enable wire segment deposition. The applying of a voltage 
to this metal film contact in the presence of an electrolyte with mono-
mer or metal ions in order to deposition lead to the controlled growth 
(bottom-up) of nanowires in the template pores. Controlling the charge 
transferred during synthesis enables the production of nanowires with 
tunable lengths. Various microstructures, such as double-conical, coni-
cal, cylindrical microtubes, or as core–shell microwires, as well bilayer 
microtubes, have been created using the template-assisted electrochem-
ical method. Several materials with varying predefined lengths were se-
quentially electrodeposited into the template pores to produce multiseg-
ment nanowires. In the membrane template-assisted electrodeposition 
technique, the pore wall of the template is used to shape the deposited 
materials, so producing the unique structure of MNMs. It is one econom-
ical method of MNMs manufacture [97, 98].

Using template-based interfacial synthesis, Yulong Ying et al. [99]
synthesized a metal-organic frameworks (MOF) based micromotor. 
The membrane-based interfacial reaction was using to create the rod 
structure of zeolitic imidazolate framework-8 (ZIF-8). The stability of 
MOF-based motors in the presence of hydrogen peroxide and acidic en-
vironment is a significant challenge. Fe (II) doping increased the struc-
tural stability in H2O2 and acidic media. Using selective deposition of Pt 
and efficient loading of magnetic Fe3O4 nanoparticles, Fe-doping ZIF-8 
(Fe-ZIF-8) microrods were developed to be magnetically controlled and 
bubble-propelled. Fe-ZIF-8 rods manufactured using a template of po-
rous polycarbonate (PC) membrane. On top of an aqueous solution of 
Zn (NO3)2 or Zn (Ac)2 with a predetermined concentration, polycarbon-
ate membranes with average pore diameters of 30 nm or 100 nm were 
floated. After soaking the membrane for 24 hours, a 1-octanol solution 
of 2-MIM was carefully placed on the membrane at the interface be-
tween the two solutions. After predetermined reaction times, the mem-
branes were removed, thoroughly washed (DI water), and dried (in air) 
24 hours. Changing the experimental conditions produces distinct nano-
structures of ZIF-8. At opposite ends of Fe-ZIF-8 microrods, Fe3O4 NPs 
and Pt NPs introduced using filtering and chemical techniques. Using a 
PC membrane with varying pore diameters, the length and diameter of 
the ZIF-8 rods were modified. Following the removal of the PC mem-
brane with CH2Cl2 (dichloromethane), 5 μm-diameter ZIF-8 rods ob-
tained. Before the production of ZIF-8 rods, Fe3O4 loaded into one side 
of the cylinder pores using particle filtration methods [44]. 

By inducing polarised deposition of conductive materials, [100] bi-
polar electrochemical deposition Fig. 4 can also be employed for the 
fabrication of MNMs. At the surface of conducting particles in solution, 
pH gradients are created based on the principles of bipolar electrochem-
istry. This enables the toposelective deposition of organic and inorganic 
polymer layers through a pH-activated precipitation mechanism. Due to 
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the process’s inherent symmetry breaking, it can be employed to make 
Janus particles in a straightforward manner [101]. 3D laser lithography 
is one of the most prevalent methods for fabricating MNMs with the 
appropriate architecture.

Wei Zhu et al. [102] constructed functionalized artificial microfish 
using a quick 3D printing process (microscale continuous optical print-
ing (µCOP)). First, Pt NPs loaded into the fish’s tail for propulsion 
through the catalytic decomposition of hydrogen peroxide, and then 
Fe3O4 NPs loaded into the fish’s head for magnetic control. The µCOP 
system could print three-dimensional structures in a single second with a 
resolution of 1 or higher, functionalized nanoparticles, biomimetic struc-
tures, and locomotive capabilities. Using in-house designed software, 
images of the required shape are individually loaded onto the DMD chip 
and projected onto photopolymerizable materials. By adjusting the cut-
ting distances and flow rates, MNMs morphologies could be easily mod-
ified. Despite the low-cost advantage and continuous production of mass 
manufacturing, the output motors using this fabrication process continue 
to be constrained by their restricted dimension range [103].

Self-assembly, which permits the synthesis of hierarchically com-
plex nanostructures from fundamental building blocks, is a prospective 
candidate strategy capable of accomplishing complex functionality at 
tiny scale. A directed self-assembly strategy used to synthesis magnet-
ically steerable, autonomously moving nanomotor system. The size of 
nanoparticles is between five and several tens of nanometers. By cou-
pling Fe3O4 NPs, Pt NPs, and Au NPs to the surface of HO- Polycapro-
lactone -SH Polymer single crystals (PSC) [104], a tailored polymer/
nanoparticle hybrid ensemble is produced. Due to its strong catalytic 
activity, platinum NP is capable of propelling the entire nanomotor, 
which weighs approximately 100 times its own mass, at a rate of 30 
μm/s. This nanomotor also enables cargo transportation and rapid re-
mote control under a magnetic field, due to the Fe3O4NP ensemble on the 
PSC. They predicted that a diversity of end-functional polymers might 
be produced to construct the intelligent PSC template to which diverse 
nanoparticles can attach.

The majority of chemically powered catalytic nanomotors can only 
work in aqueous solutions with low ionic strength, because the solution 
conductivity decreases the axial velocity linearly. Joseph Wang et al. 
used a template-assisted approach that depicted a vastly simplified pro-
tocol compared to the lithographic route previously used (top-down) for 
fabricating rolled-up catalytic microtubes and offers a low-cost method 
for engineering tubular microjets comprised of various material com-
binations. The mechanism of oxygen-recoil propulsion of the tubular 
microjet motor overcame the significant ionic-strength constraint of 
catalytic motors with nanowire structures and enabled salt-independent 
motion (in one molar salt solution can propel at high speed). Placing a 
ferromagnetic nickel intermediate layer allowed guided motion as well 
as the transfer of big magnetic cargo along a preset path [103].

5.2. Characterization

This paper also discusses the prevalent characterization methods for 
MNMs that are utilized nowadays. The structure, size, velocity, and oth-
er relevant aspects of recently constructed magnetic MNMs with bubble 
propulsion are briefly summarized in Table.1, followed by a description 
of the characterization techniques, including monitoring, motor scale, 
and bubble size, etc.

Chemical propulsion lacks the level of control of magnetically pow-
ered MNMs, particularly in terms of ON/OFF motion, speed control, 
and directionality characteristics. The fuel-powered MNMs have been 
the subject of considerable effort, yet they remain unsatisfactory. Par-
ticularly for the self-electrophoresis mechanism, their movement is 
affected by the ion concentration of fluids and concentration of fuels. 
Alternatively, when the fuels exhausted, MNMs cannot undertake mis-

sions continually [105]. Fig. 5 shows a simple illustration of magnetic 
and bubble propelled MNM.

Although chemically propelled swimmers are beneficial for chemis-
try-on-the-fly applications such as water cleanup, magnetic components 
have been widely incorporated to provide greater controllability on the 
mobility features of these chemical swimmers. In addition, the disposal 
of MNMs into open water has a detrimental effect on the ecosystem. 
MNMs can be retrieved effectively by membrane separation or using an 
electrical external or magnetic field [106-108].

MNMs, which are composed of magnetic materials like magnetic 
iron oxides [109], iron, Cobalt [110], nickel [111], and their alloys [30, 
112], provide magnetic control. These MNMs will orient themselves 
in accordance with the direction of the magnetic field and might be 
quickly recollected by applying an external magnetic field. Recovery 
of nanoparticles, like adsorbents from water, is often accomplished us-
ing membrane separation. But, membrane separation is unsuccessful for 
separating nanoparticles of same size. Combining photocatalysis tech-
nologies with bubble-propulsion mechanism and magnetic control will 
lead to highly effective environmental remediation [113].

Current work in the field of MNMs attempt to impart them with 
adaptable movement to increase their overall functionality in complex 
situations. The MNMs’ structural architecture enables the incorporation 
of several features into a single unit for enhanced motion direction and 
control of their propulsion behavior with diverse energy sources to ac-
celerate, decelerate, and reverse their navigation. According to Wang’s 
team [48], a magnetocatalytic hybrid micromotor consists of a gold/
platinum nanowire which is responsible for catalytic propulsion, with a 
nickel tail coupled to a silver segment which is responsible for magnetic 
propulsion. Using a magnetic field to counteract the impediment to the 
catalytic/phoretic mode’s motility in salt-rich, complex environments 
offers tremendous promise. Thus, it can be argued that the direction of 
the micromotor trajectory in bubble-magnetic mode (compared to bub-
ble-mode) allows for a more efficient distribution of the micromotor’s 
thrusting force, resulting in faster speeds. In other words, increasing the 
micromotor’s directionality by aligning it with a magnetic field can also 
contribute to a speed boost due to improved fuel interaction with active 
nanoparticles [114, 115].

As previously stated, MNMs have various structures, including he-
lical, cylinders, spheres, rods, fishlike, shapeless, etc. MNMs can be 
examined for their size and structure using common imaging techniques 
such as SEM [116] and TEM [117]. AFM [118] images use to examine 
the surface’s topography. EDS or EDX [119] analyses utilize for elemen-
tal analysis and verification of element incorporation. The capacity to 
control motion, alter direction, rotate, and control speed is a crucial topic 
and the primary advantage of employing magnetic and bubble propelled 
MNMs. Equipped optical utilize for motility investigation, which will 
be discussed further.

Besides direct motion control, magnetic fields can also be utilized to 
trigger hyperthermia thermophoresis and magnetoelectricity. Magnetic 
hyperthermia is the process of heating tumors, tissues, cells, or systems 
to temperatures as high as 42 °C by turning magnetic energy into heat 
radiation. As MNMs can be externally delivered to the infection site 
with the assistance of real-time image guidance (for example magnetic 
particle imaging scanner, clinical MRI scanner) and resulting hyperther-
mia treatment is localized by focusing on the tumour tissue, this function 
is preferred for treating cancer cells while minimizing damage to sur-
rounding healthy tissues [120, 121]..

In another work, fluid dynamics simulations were used to eval-
uate the synergistic effect of bubble-propulsion in conjunction with 
various external stimuli (such as magnetic field and light irradiation) 
on the speed of micromotors. According to the findings, platinum- or 
manganese dioxide-based quantum dots with Fe2O3 NPs showed much 
faster bubble-light and bubble-magnetic combined motions compared 
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to bubble-free modes. Kaisong Yuan found that in bubble-light and bub-
ble-magnetic modes, a built-in acceleration mechanism increases mi-
cromotor speed by up to 1.5 and 3.0 times, respectively, when a light 
or magnetic field is applied [108]..

The MNM produced by the group of Prodyut Dhar [126] contained 
Fe2O3/palladium NPs and cellulose nanocrystals (CNC) [129]. Based on 
the concept of Laplace pressure, it was anticipated that the lower di-
ameters of bubbles created at a higher frequency by palladium NPs, on 
expulsion would exert a greater surface pressure on the nanomotor than 
the larger diameter bubbles produced by Fe2O3. Form the optical micro-
graphs of Pd-FeCNC nanomotors, the development of two various sizes 
of bubbles by Pd and Fe2O3 NPs on its surface could be noticed, leading 
to the formation of a heterogeneous bubble gradient. Due to the dispar-
ity in bubble sizes surrounding Pd-FeCNC nanomotors, a gradient of 
Laplace pressure is generated across its surface, inducing a net positive 
thrust that results in the nanomotor’s motion in a particular direction. 
Thus, the local pressure difference was caused by changes in the rate 
constant of H2O2 decomposition, bubble formation rate, bubble mor-
phology, bubble growth dynamics, and bubble ejection, which resulted 
in a net positive driving force and nanomotor self-propulsion. The inclu-
sion of two distinct (catalytic and magnetic) active NPs on CNC surface 
led in autonomous mobility of nanomotors via heterogeneous bubble 
propulsion mechanism, These findings were reported for the first time.

Whitesides et al. [130] introduced the first synthetic catalytic mo-
tor on a centimeter size powered by hydrogen peroxide. This research 
stimulated the development of MNMs by lowering the size of catalytic 
motors, which led to effective cargo transportation and more precise. 
Sen et al. [2] produced micromotors made of Pt and Au with automated 
motion in liquid. Wu et al. [131]created an autonomous Janus capsule 
motor made of partly coated dendritic Pt NPs by combining microcon-
tact with printing template-assisted layer-by-layer self-assembly.

A typical setup platform for observing and controlling magnetically 
propelled MNMs includes an optical microscope, eventually connected 
to a high-resolution camera, a sample stage, a computer system with 
video capture and processing capabilities and a magnetic manipulation 
system. As the magnetic field source, the magnetic manipulation system 
comprises either electromagnets or permanent magnets. By only mod-
ifying the position and direction of a magnet, motors can be propelled 
through the use of a portable magnet in a straightforward manner. Al-
though numerous researchers have documented the motion of magnetic 
MNMs using a single permanent magnet, operational reproducibility 
and precision are challenging due to the fact that magnet movement is 
highly dependent on the operator [132-134]. Fig. 6 shows a schematic of 
actuating and visualizing MNMs system. 

6. Conclusion and future approach

The creation of MNMs can be aided by a deeper comprehension of 
their design and manufacture. In the near future, the development of 
robust MNMs with the capacity for precise control and orientation will 
enable widespread use of these vehicles. According to external or inter-
nal sources of energy, MNMs have their own unique characteristics and 
applications, and their limitations vary.

Magnetic MNMs tend to be particularly effective when precise 
movement control is required, and one of its additional benefits is the 
ability to separate and collect them without leaving any environmental 
pollutants behind. Combining these characteristics with powerful bubble 
propelled motors at high speeds is quite advantageous. In contrast, by 
combining these two categories, the limits of each thrust method can 
be minimized to the greatest extent possible. The problem of movement 
in medium with high ionic strength is one of the motion restrictions of 
MNMs using bubble propulsion, and the inability to control the orienta-

tion and movement of these devices restricts their uses.
The application of strong magnetic fields to boost the movement 

speed of magnetic MNMs is a constraint that can be overcome by com-
bining these two propulsion mechanisms. The lower speed can also be 
overcome by integrating the two propulsion systems. These motors 
have showed significant promise for cargo applications, sensor, medici-
nal, and environmental. In the future, it is proposed to explore and fab-
ricate magnetic MNMs with bubble thrust from other materials and with 
diverse structures and to investigate integrated motion mechanisms in 
order to maximize the benefits of these motors.
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