

Available online at www.jourcc.comJournal homepage: www.JOURCC.com

Journal of Composites and Compounds

3,5-Bis(trifluoromethyl) phenylammonium triflate: a new and green organocatalyst for the synthesis of indeno[1,2-b]pyridines

Samad Khaksar ^{a, b*}, Mandana Alipour ^c, Peyman Salahshour ^b, Zinatosadat Hossaini ^c

^a Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

^b School of Science and Technology, The University of Georgia, Tbilisi, Georgia

^c Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran

ABSTRACT

3,5-Bis(trifluoromethyl) phenyl ammonium triflate(BFPAT) catalyzed one-pot synthesis of indeno[1,2-b]pyridine compound derivatives by four-component condensation of aldehyde, aromatic ketones, 1,3-indanedione, and ammonium acetate in ethanol. Accessible starting materials, Simplicity of operation, green and practical catalyst, easy purification, and excellent yields are the key benefits of the current technique.

©2022 UGPH.

Peer review under responsibility of UGPH.

ARTICLE INFORMATION

Article history:

Received 05 August 2022

Received in revised form 16 October 2022

Accepted 13 December 2022

Keywords:

Organocatalyst

Green

Pyridine

Reusable

Heterocycle

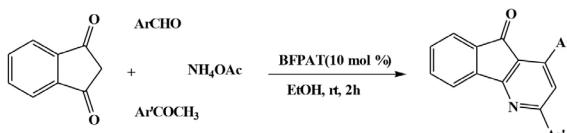
1. Introduction

In the past 20 years, organocatalysis has emerged as an important area of research [1, 2]. Organocatalysts are easy and inexpensive to assemble, generate no waste, have simple purification, and have aspects of the high atomic economy thus encompassing the principles of Green Chemistry.[3-8] Organocatalytic reactions that afford achiral compounds have received considerable attention, since opening new pathways in organic synthesis as a cheap, non-toxic, readily available starting material providing the corresponding products with high yields [9-12].

Recently, Aryl ammonium triflate has gotten impressive consideration for numerous organic reactions, giving the corresponding products in high yields with great selectivity [13-19]. In proceeding with our studies on the utilization of new reagents or frameworks for organic transformations, [20-24] we present herein an effective strategy for the synthesis of indeno[1,2-b]pyridine derivatives utilizing 3,5-Bis(trifluoromethyl) phenylammonium triflate (BFPAT), as a new effective catalyst (Scheme 1).

Indenopyridines (azafluorenes) as a class of azaheterocycles are widely investigated for their assorted biological properties, such as cytotoxic [25], phosphodiesterase inhibitory [26], adenosine A2a receptor antagonistic [27], antiinflammatory/anti-allergic [28], coronary dilating [29] and calcium modulating activities [30]. Moreover, pyrimidine-related compounds are also used in the treatment of hyperlipoproteinemia and arteriosclerosis [31] as well as neurodegenerative diseases [32].

Consequently, there has been continuous interest in developing effec-


tive synthetic techniques for the synthesis of various Indenopyridines. Numerous synthetic strategies have been reported for the preparation of Indenopyridines and their analogues [33-39]. Some of these strategies are related with specific constraints, for example, the use of excess and expensive catalyst, long reaction time, numerous steps, low yields, toxic solvents, the use of harmful metal catalysts, and harsh reaction circumstance. Furthermore, most of the described methods lead to significant amounts of by-products resulting in poor overall yield. Consequently, there is still a need to find out greener catalyst to overcome these deficiencies and satisfy the criteria of a basic, proficient, and eco-friendly protocol for the synthesis of Indenopyridines.

2. Experimental

2.1. Preparation of 3,5-bis(trifluoromethyl) phenylammonium triflate (BFPAT)

$\text{CF}_3\text{SO}_3\text{H}$ (7.50 g, 50 mmol) was added to a stirred solution of 3,5-bis(trifluoromethyl)aniline (11.45 g, 50 mmol) in toluene (50.0 ml) at 0-5 °C, and the mixture was stirred at the same temperature for 30 min. Evaporation of the solvent gave the crude product, which was washed with dry ether to give a pure BFPAT (15.8 g, 95%) as colourless crystals. ^1H NMR (acetone- d_6 , 400 MHz) δ : 7.43-7.66 (brs, 3H); IR (KBr) 3416, 2965, 1532, 1250, 1179 cm^{-1} .

* Corresponding author: Samad Khaksar; E-mail: s.khaksar@ug.edu.ge

Scheme 1. Synthesis of indeno[1,2-b]pyridines using BFPAT organocatalyst.

2.2. Typical experimental procedure

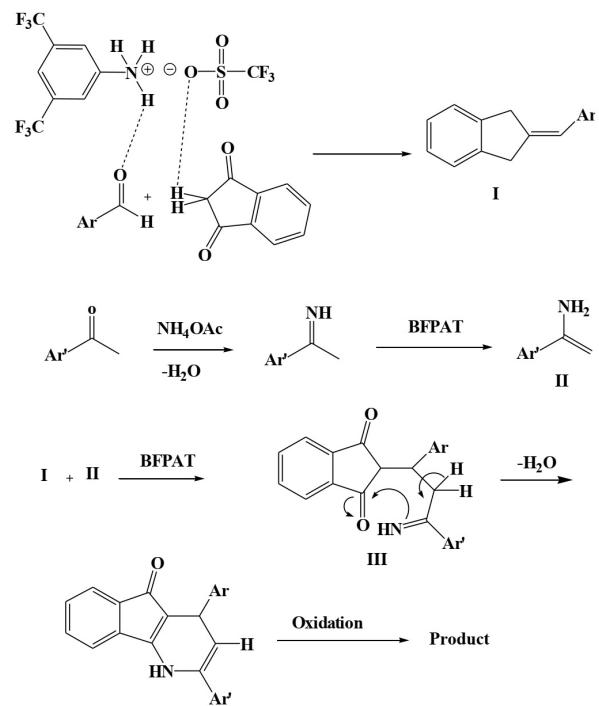
A mixture of aldehyde (1 mmol), acetophenone (1 mmol), 1,3-indanedione (1 mmol), and ammonium acetate (1.2 mmol) dissolved in 3 mL toluene, and PFPAT (10 mol%) was stirred at r.t. for the stipulated time. The progress of the reaction is monitored by TLC. After completion of the reaction, the corresponding solid product 5 was obtained through simple filtering, and recrystallized from hot ethanol affording the highly pure indeno[1,2-b]pyridine compound derivatives. The physical data (mp, IR, NMR) of known compounds were found to be identical with those reported in the literature. Spectroscopic data for selected examples are shown below.

4-(4-Chlorophenyl)-2-phenyl-indeno[1,2-b]pyridin-5-one (Table 1, entry 1), solid, mp 186–188 °C; IR (KBr): 3070, 1712, 1560, 1520 cm^{-1} . ^1H NMR (400 MHz, CDCl_3) δ : 7.14 (s, 1H), 7.22–7.72 (m, 11H), 7.92–8.2 (m, 2H); ^{13}C NMR (100 MHz, CDCl_3) δ : 111.5, 118.1, 121.7, 124.1, 128.3, 128.9, 129.4, 129.3, 129.7, 131.5, 134.2, 136.1, 137.2, 140.4, 142.1, 143.1, 145.2, 147.5, 163.5, 193.2.

3. Results and discussion

We initially explored the reaction of 4-Cl-benzaldehyde (1 mmol), acetophenone (1 mmol), 1,3-indanedione (1 mmol), and ammonium acetate (1.2 mmol) in ethanol at room temperature in the presence of BFPAT (5 mol%), which gave the expected product 5a in 80% yield. We subsequently examined the effect of catalyst loading and solvent on the yield of the product, and the results of these analyses are outlined in Table 1.

Various solvents have also been investigated (e.g., CH_2Cl_2 , DMF, THF, toluene, and CH_3CN), and (Table 1, entries 4–8). Among them, ethanol gave the maximum yield at room temperature after 2 h (Table 1, entry 3). Moreover, in the absence of a catalyst, no conversion to the product was achieved even after 24 h (Table 1, entry 1). Using the same model reaction, we examined the optimal quantity of catalyst. While increasing the amount of catalyst to 10 mol %, the product of 5 was


Table 1.

Effect of different BFPAT and solvent on the formation of 5a.

Entry	BFPAT amount (mol%)	Condition/solvent	Time (h)/yield ^b
1	0	rt/Et OH	24/N.R
2	5	rt/Et OH	3/80
3	10	rt/Et OH	2/90
4	10	rt/DMF	5/60
5	10	rt/ CH_3CN	5/70
6	10	rt/toluene	5/50
7	10	rt/THF	5/60
8	10	rt/ CH_2Cl_2	5/50
9	15	rt/ CH_2Cl_2	2/90

^a Reaction condition: 4-Cl-benzaldehyde (1 mmol), acetophenone (1 mmol), 1,3-indanedione (1 mmol), and ammonium acetate (1.2 mmol) in ethanol at room temperature in the presence of BFPAT.

^b Isolated yield

Scheme 2. Probable mechanism for BFPAT-catalyzed Synthesis of indeno[1,2-b]pyridines.

afforded in 90% yield, respectively (entry 3), which demonstrated the significant role of catalyst concentration in the reaction. Increasing either catalyst loading and/or increasing the reaction time did not raise the yield (Table 1, entry 9). Remarkably, when the reaction occurred in an ethanol medium, a solid product participated at the end of the reaction.

With the optimal reaction conditions in hand, the scope and efficiency of this approach were explored for the synthesis of a wide variety of substituted indeno[1,2-b]pyridines and results are summarized in Table 2.

A wide range of aldehydes with both electron-donating and electron-withdrawing substituents were also converted to the corresponding indeno[1,2-b]pyridines in excellent yield and purity as outlined in Table 2.

It has been shown that the electronic characteristics of the substituents have little impact on the efficiency of this reaction. For example, Aromatic aldehydes bearing an electron-withdrawing group (e.g., 4-Cl, 3-NO₂, 4-NO₂, 4-Br, or 4-F) group reacted efficiently to afford the corresponding products in good to excellent yields (85–93%). For ketone substrates carrying an electron-donating group on the benzene ring, satisfactory high yields were also noted. Notably, electron-sterically hindered (2-Cl and 2,4-di-Cl) substrates reacted well to give the expected products in good yields (80–85%, 5c–5e).

A possible mechanism for the formation of indeno[1,2-b]pyridines is figured in Scheme 2.

In this process, BFPAT can improve the electrophilic character of the electrophiles by virtue of its intrinsic Brønsted acidity which makes it able of bonding with the carbonyl oxygen. Moreover, the highly hydrophobic wall of a moiety of BFPAT effectively repels H_2O produced by condensation. The superiority of BFPAT to similar catalysts such as pentafluorophenylammonium triflate (PFPAT) [13] and diphenylammonium triflate (DPAT) [40], is ascribed to the lower basicity of the $(\text{CF}_3)_2\text{C}_6\text{H}_3\text{NH}_2$ counter amine compared to $\text{C}_6\text{F}_5\text{NH}_2$ and Ph_2NH .

It was suggested that the product 5 may form via the initial formation of intermediate I, which was obtained from the nucleophilic attack of 1,3-indanedione to the aldehyde. The second key intermediate is

Table 2.

Synthesis of indeno[1,2-b]pyridines in the presence of BFPAT

Entry	Ar	Ar'	Product	Yield	Mp ^{ref}
1	4-Cl-C ₆ H ₄	C ₆ H ₅	5a	90	186-188 ²⁹
2	4-NO ₂ -C ₆ H ₄	4-CH ₃ O-C ₆ H ₄	5b	91	217-218 ²⁹
3	3-NO ₂ -C ₆ H ₄	2,4-Cl ₂ C ₆ H ₃	5c	85	262-263 ³⁰
4	4-Cl-C ₆ H ₄	4-Cl-C ₆ H ₄	5d	88	226-227 ¹⁵
5	2-Cl-C ₆ H ₄	4-OMe-C ₆ H ₄	5e	80	265-267 ²⁹
6	4-F-C ₆ H ₄	4-OMe-C ₆ H ₄	5f	93	196-197 ¹⁵
7	4-NO ₂ -C ₆ H ₄	4-OMe-C ₆ H ₄	5g	92	223-225 ²⁹
8	3-NO ₂ -C ₆ H ₄	4-OMe-C ₆ H ₄	5h	90	220-222 ³⁰
9	4-Me-C ₆ H ₄	4-OMe-C ₆ H ₄	5k	92	160-161 ¹⁵
10	4-Br-C ₆ H ₄	4-OMe-C ₆ H ₄	5l	90	216-218 ²⁹
11	4-Cl-C ₆ H ₄	4-OMe-C ₆ H ₄	5m	92	200-202 ²⁹
12	4-Br-C ₆ H ₄	2-pyridyl	5n	85	177-179 ²⁹

enamine II, which is formed from acetophenone and ammonium acetate. Condensation of these two parts gives intermediate III, followed by intramolecular cyclization and air oxidation produces the final product.

It can be supposed that the water exclusion of BFPAT may favor both imine and intermediate I formation. In addition, $(CF_3)_2C_6H_3NH_2$ easily separated from the reaction mixture after workup with distillation under reduced pressure ($(CF_3)_2C_6H_3NH_2$: 85 °C/15 mmHg(lit.)).

4. Conclusion

In summary, we have demonstrated an efficient and practical process for the synthesis of some indeno[1,2-b]pyridine derivatives in ethanol using BFPAT as a green, inexpensive, and powerful organocatalyst. The advantages offered by this method are: simple reaction condition, operational simplicity, a green and cost-effective catalyst, easy purification, and excellent yields. We would like to say that this strategy is environmentally friendly, and is a new effective procedure for the synthesis of indeno[1,2-b]pyridine derivatives.

Acknowledgments

The authors thank the Research Committee of Islamic Azad University (Qaemshahr & Ayatollah Amoli Branch) and the University of Georgia (Tbilisi) for the financial support of this work.

REFERENCES

- [1] H.-H. Zhang, F. Shi, Organocatalytic Atroposelective Synthesis of Indole Derivatives Bearing Axial Chirality: Strategies and Applications, *Accounts of Chemical Research* 55(18) (2022) 2562-2580.
- [2] Y.-X. Li, J.-Z. Wang, Y. Shimadate, M. Kise, A. Kato, Y.-M. Jia, G.W.J. Fleet, C.-Y. Yu, C-6 fluorinated casuarines as highly potent and selective amyloglucosidase inhibitors: Synthesis and structure-activity relationship study, *European Journal of Medicinal Chemistry* 244 (2022) 114852.
- [3] P.I. Dalko, L. Moisan, In the Golden Age of Organocatalysis, *Angewandte Chemie International Edition* 43(39) (2004) 5138-5175.
- [4] A.G. Doyle, E.N. Jacobsen, Small-Molecule H-Bond Donors in Asymmetric Catalysis, *Chemical Reviews* 107(12) (2007) 5713-5743.
- [5] F. Peng, Z. Shao, Advances in asymmetric organocatalytic reactions catalyzed by chiral primary amines, *Journal of Molecular Catalysis A: Chemical* 285(1) (2008) 1-13.
- [6] A. Dondoni, A. Massi, Asymmetric Organocatalysis: From Infancy to Adolescence, *Angewandte Chemie International Edition* 47(25) (2008) 4638-4660.
- [7] F. Li, W. Yang, M. Li, L. Lei, LED-induced controlled radical polymerization with an *in situ* bromine-iodine transformation and block polymerization combined with ring-opening polymerization using one organocatalyst, *Polymer Chemistry* 10(29) (2019) 3996-4005.
- [8] Z.-H. Chen, X.-Y. Wang, Y. Tang, Reversible complexation mediated polymerization: an emerging type of organocatalytically controlled radical polymerization, *Polymer Chemistry* 13(17) (2022) 2402-2419.
- [9] P. Renzi, M. Bella, Non-asymmetric organocatalysis, *Chemical Communications* 48(55) (2012) 6881-6896.
- [10] N. Arif, I. Uddin, A. Hayat, W.U. Khan, S. Ullah, M. Hussain, Homogeneous iron-doped carbon-nitride-based organo-catalysts for sensational photocatalytic performance driven by visible light, *Polymer International* 70(9) (2021) 1273-1281.
- [11] B.S. Vachan, M. Karuppasamy, P. Vinoth, S. Vivek Kumar, S. Perumal, V. Sridharan, J.C. Menéndez, Proline and its Derivatives as Organocatalysts for Multi- Component Reactions in Aqueous Media: Synergic Pathways to the Green Synthesis of Heterocycles, *Advanced Synthesis & Catalysis* 362(1) (2020) 87-110.
- [12] R. Gérard, J. Estager, P. Luis, D.P. Debecker, J.-C.M. Monbaliu, Versatile and scalable synthesis of cyclic organic carbonates under organocatalytic continuous flow conditions, *Catalysis Science & Technology* 9(24) (2019) 6841-6851.
- [13] T. Funatomi, K. Wakasugi, T. Misaki, Y. Tanabe, Pentafluorophenylammonium triflate (PFPAT): an efficient, practical, and cost-effective catalyst for esterification, thioesterification, transesterification, and macrolactone formation, *Green Chemistry* 8(12) (2006) 1022-1027.
- [14] A. Iida, J. Osada, R. Nagase, T. Misaki, Y. Tanabe, Mild and Efficient Pentafluorophenylammonium Triflate (PFPAT)-Catalyzed C-Acylations of Enol Silyl Ethers or Ketene Silyl (Thio)Acetals with Acid Chlorides, *Organic Letters* 9(10) (2007) 1859-1862.
- [15] S. Khaksar, S.M. Ostad, Pentafluorophenylammonium triflate as an efficient, environmentally friendly and novel organocatalyst for synthesis of bis-indolyl methane derivatives, *Journal of Fluorine Chemistry* 132(11) (2011) 937-939.
- [16] M. Ghashang, S.S. Mansoor, K. Aswin, Pentafluorophenylammonium triflate (PFPAT) catalyzed facile construction of substituted chromeno[2,3-d]pyrimidinone derivatives and their antimicrobial activity, *Journal of Advanced Research* 5(2) (2014) 209-218.
- [17] N. Montazeri, K. Pourshamsian, S. Yosefiyan, S.S. Momeni, Pentafluorophenylammonium triflate-CuCl₂: A mild, efficient and reusable heterogeneous catalyst system for facile synthesis of 4(3H)-quinazolinones under solvent-free conditions, *Journal of Chemical Sciences* 124(4) (2012) 883-887.
- [18] S. Khaksar, N. Behzadi, Pentafluorophenylammonium Triflate (PFPAT): An Efficient, Practical, and Cost-Effective Catalyst for One-Pot Condensation of β-Naphthol, Aldehydes and Cyclic 1,3-Dicarbonyl Compounds, *Combinatorial Chemistry & High Throughput Screening* 15(10) (2012) 845-848.
- [19] X. Kong, L. Lin, Q. Chen, B. Xu, Radical generation from electroreduction of aryl and benzyl ammonium salts: synthesis of organoboronates, *Organic Chemistry Frontiers* 8(4) (2021) 702-707.
- [20] E.M.M. Abdelraheem, S. Khaksar, K. Kurpiewska, J. Kalinowska-Tlućik, S. Shaabani, A. Dömling, Two-Step Macrocycle Synthesis by Classical Ugi Reaction, *The Journal of Organic Chemistry* 83(3) (2018) 1441-1447.
- [21] S. Khaksar, M. Tajbakhsh, M. Gholami, Polyvinylpolypyrrolidone-supported triflic acid (PVPP-OTf) as a new, efficient, and recyclable heterogeneous catalyst for the synthesis of bis-indolyl methane derivatives, *Comptes Rendus Chimie* 17(1) (2014) 30-34.
- [22] S. Khaksar, M. Gholami, An eco-benign and highly efficient access to dihydro-1H-indeno[1,2-b]pyridines in 2,2,2-trifluoroethanol, *Journal of Molecular Liquids* 196 (2014) 159-162.
- [23] S. Khaksar, H. Radpeyma, Pentafluorophenylammonium triflate: A highly efficient catalyst for the synthesis of quinoxaline derivatives in water, *Comptes Rendus Chimie* 17(10) (2014) 1023-1027.
- [24] B. Faraji Dizaji, M. Hasani Azerbajian, N. Sheisi, P. Goleij, T. Mirmajidi, F. Chogani, M. Irani, F. Sharafian, Synthesis of PLGA/chitosan/zeolites and PLGA/chitosan/metal organic frameworks nanofibers for targeted delivery of Paclitaxel toward prostate cancer cells death, *International Journal of Biological Macromolecules* 164 (2020) 1461-1474.
- [25] R. Miri, K. Javidnia, B. Hemmateenejad, A. Azarpira, Z. Amirghofran, Synthesis, cytotoxicity, QSAR, and intercalation study of new diindenopyridine derivatives, *Bioorganic & Medicinal Chemistry* 12(10) (2004) 2529-2536.
- [26] G.R. Heintzelman, K.M. Averill, J.H. Dodd, PCT Int. Appl. WO 2002085894 A1 20021031, 2002.
- [27] G.R. Heintzelman, K.M. Averill, J.H. Dodd, K.T. Demarest, Y. Tang, P.F. Jackson, 5-oxo and 5-thio Derivatives of 5h-Indeno'1, 2-Bipyridine with Adenosine a2a Receptor Binding and Phosphodiesterase Inhibiting Activity for the Treatment of Neurodegenerative Disorders and Inflammation Related Diseases, Int. Patent WO 3(088963) (2003) 30.
- [28] K. Cooper, M.J. Fray, P.E. Cross, K. Richardson, 0299727| 231441, (1989).
- [29] B. Vigante, J. Ozols, G. Sileniece, A. Kimenis and G. Duburs, U. S. S. R. SU, 794006 19810107 (1989).
- [30] C. Safak, R. Simsek, Y. Altas, S. Boydag, K. Erol, 2-methyl-3-acetyl-4-aryl-5-oxo-1,4-dihydro-5H indeno[1,2-b] pyridine derivatives studies and their calcium antagonistic activities, *Boll Chim Farm* 136(11) (1997) 665-669.
- [31] A. Brandes, M. Loegers, G. Schmidt, R. Angerbauer, C. Schmeck, K.-D. Bremm, H. Bischoff, D. Schmidt, J. Schuhmacher, Ger. Offen. DE 19627430 A1

19980115 (1998).

[32] G.R. Heintzelman, K.M. Averill, J.H. Dodd, K.T. Demarest, Y. Tang, P.F. Jackson, PCT Int. Appl. WO 2003088963 A1 20031030 (2003).

[33] M. Bayat, F.S. Hosseini, B. Notash, Stereoselective synthesis of indenone-fused heterocyclic compounds via a one-pot four-component reaction, *Tetrahedron* 73(8) (2017) 1196-1204.

[34] C. Mukhopadhyay, P.K. Tapaswi, R.J. Butcher, L-Proline-catalyzed one-pot expedited synthesis of highly substituted pyridines at room temperature, *Tetrahedron Letters* 51(13) (2010) 1797-1802.

[35] S. Samai, G. Chandra Nandi, R. Kumar, M.S. Singh, Multicomponent one-pot solvent-free synthesis of functionalized unsymmetrical dihydro-1H-indeno[1,2-b]pyridines, *Tetrahedron Letters* 50(50) (2009) 7096-7098.

[36] M.T. DuPriest, C.L. Schmidt, D. Kuzmich, S.B. Williams, A facile synthesis of 7-halo-5H-indeno[1,2-b]pyridines and -pyridin-5-ones, *The Journal of Organic Chemistry* 51(11) (1986) 2021-2023.

[37] K.V. Emelen, T.D. Wit, G.J. Hoornaert, F. Compernolle, Diastereoselective Intramolecular Ritter Reaction: Generation of a Cis-Fused Hexahydro-4aH-indeno[1,2-b]pyridine Ring System with 4a,9b-Diangular Substituents, *Organic Letters* 2(20) (2000) 3083-3086.

[38] S. Tu, B. Jiang, R. Jia, J. Zhang, Y. Zhang, An efficient and expedited microwave-assisted synthesis of 4-azafluorenones via a multi-component reaction, *Tetrahedron Letters* 48(8) (2007) 1369-1374.

[39] P.K. Tapaswi, C. Mukhopadhyay, Ceric ammonium nitrate (CAN) catalyzed one-pot synthesis of fully substituted new indeno [1, 2-b] pyridines at room temperature by a multi-component reaction, *Arkivoc* 2011 (2011) 287-298.

[40] K. Wakasugi, T. Misaki, K. Yamada, Y. Tanabe, Diphenylammonium triflate (DPAT): efficient catalyst for esterification of carboxylic acids and for transesterification of carboxylic esters with nearly equimolar amounts of alcohols, *Tetrahedron Letters* 41(27) (2000) 5249-5252.