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1. Introduction

In the past 20 years, organocatalysis has emerged as an important 
area of research [1, 2]. Organocatalysts are easy and inexpensive to as-
semble, generate no waste, have simple purification, and have aspects 
of the high atomic economy thus encompassing the principles of Green 
Chemistry.[3-8] Organocatalytic reactions that afford achiral compounds 
have received considerable attention, since opening new pathways in or-
ganic synthesis as a cheap, non-toxic, readily available starting material 
providing the corresponding products with high yields [9-12].

Recently, Aryl ammonium triflate has gotten impressive consider-
ation for numerous organic reactions, giving the corresponding prod-
ucts in high yields with great selectivity [13-19]. In proceeding with 
our studies on the utilization of new reagents or frameworks for organic 
transformations, [20-24] we present herein an effective strategy for the 
synthesis of indeno[1,2-b]pyridine derivatives utilizing 3,5-Bis(trifluo-
romethyl) phenylammonium triflate (BFPAT), as a new effective catalyst 
(Scheme 1).

Indenopyridines (azafluorenes) as a class of azaheterocycles are 
widely investigated for their assorted biological properties, such as cy-
totoxic [25], phosphodiesterase inhibitory [26], adenosine A2a receptor 
antagonistic [27], antiinflammatory/anti-allergic [28], coronary dilating 
[29] and calcium modulating activities [30]. Moreover, pyrimidine-re-
lated compounds are also used in the treatment of hyperlipoproteinemia 
and arteriosclerosis [31] as well as neurodegenerative diseases [32].

Consequently, there has been continuous interest in developing effec-

tive synthetic techniques for the synthesis of various Indenopyridines. 
Numerous synthetic strategies have been reported for the preparation of 
Indenopyridines and their analogues [33-39]. Some of these strategies 
are related with specific constraints, for example, the use of excess and 
expensive catalyst, long reaction time, numerous steps, low yields, toxic 
solvents, the use of harmful metal catalysts, and harsh reaction circum-
stance. Furthermore, most of the described methods lead to significant 
amounts of by-products resulting in poor overall yield. Consequently, 
there is still a need to find out greener catalyst to overcome these defi-
ciencies and satisfy the criteria of a basic, proficient, and eco-friendly 
protocol for the synthesis of Indenopyridines.

2. Experimental

2.1. Preparation of 3,5-bis(trifluoromethyl) phenylammonium triflate 
(BFPAT)

 CF3SO3H (7.50 g, 50 mmol) was added to a stirred solution of 
3,5-bis(trifluoromethyl)aniline (11.45 g, 50 mmol) in toluene (50.0 
ml) at 0-5 °C, and the mixture was stirred at the same temperature for 
30 min. Evaporation of the solvent gave the crude product, which was 
washed with dry ether to give a pure BFPAT (15.8 g, 95%) as colour-
less crystals. 1H NMR (acetone-d6, 400 MHz) δ: 7.43–7.66 (brs, 3H); 
IR (KBr) 3416, 2965, 1532, 1250, 1179 cm-1.
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3,5-Bis(trifluoromethyl) phenyl ammonium triflate(BFPAT) catalyzed one-pot synthesis of indeno[1,2-b]pyridine 
compound derivatives by four-component condensation of aldehyde, aromatic ketones, 1,3-indanedione, and am-
monium acetate in ethanol. Accessible starting materials, Simplicity of operation, green and practical catalyst, 
easy purification, and excellent yields are the key benefits of the current technique. 
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 2.2. Typical experimental procedure

A mixture of aldehyde (1 mmol), acetophenone (1 mmol), 1,3-in-
danedione (1 mmol), and ammonium acetate (1.2 mmol) dissolved in 
3 mL toluene, and PFPAT (10 mol%) was stirred at r.t. for the stipulat-
ed time. The progress of the reaction is monitored by TLC. After com-
pletion of the reaction, the corresponding solid product 5 was obtained 
through simple filtering, and recrystallized from hot ethanol affording 
the highly pure indeno[1,2-b]pyridine compound derivatives. The phys-
ical data (mp, IR, NMR) of known compounds were found to be identi-
cal with those reported in the literature. Spectroscopic data for selected 
examples are shown below.

4-(4-Chlorophenyl)-2-phenyl-indeno[1,2-b]pyridin-5-one (Table 
1, entry 1), solid, mp 186–188 °C; IR (KBr): 3070, 1712, 1560, 1520 
cm−1. 1H NMR (400 MHz, CDCl3) δ: 7.14 (s, 1H), 7.22–7.72 (m, 11H), 
7.92–8.2 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 111.5, 118.1, 121.7, 
124.1, 128.3, 128.9, 129.4, 129.3, 129.7, 131.5, 134.2, 136.1, 137.2, 
140.4, 142.1, 143.1, 145.2, 147.5, 163.5, 193.2.

3. Results and discussion

We initially explored the reaction of 4-Cl-benzaldehyde (1 mmol), 
acetophenone (1 mmol), 1,3-indanedione (1mmol), and ammonium 
acetate (1.2 mmol) in ethanol at room temperature in the presence of 
BFPAT(5 mol%), Which gave the expected product 5a in 80% yield. 
We subsequently examined the effect of catalyst loading and solvent on 
the yield of the product, and the results of these analyses are outlined 
in Table 1.

Various solvents have also been investigated (e.g., CH2Cl2, DMF, 
THF, toluene, and CH3CN), and (Table 1, entries 4–8). Among them, 
ethanol gave the maximum yield at room temperature after 2 h (Table 
1, entry 3). Moreover, in the absence of a catalyst, no conversion to the 
product was achieved even after 24 h (Table 1, entry 1). Using the same 
model reaction, we examined the optimal quantity of catalyst.  While 
increasing the amount of catalyst to 10 mol %, the product of 5 was 

afforded in 90% yield, respectively (entry 3), which demonstrated the 
significant role of catalyst concentration in the reaction. Increasing ei-
ther catalyst loading and/or increasing the reaction time did not raise the 
yield (Table 1, entry 9). Remarkably, when the reaction occurred in an 
ethanol medium, a solid product participated at the end of the reaction. 

 With the optimal reaction conditions in hand, the scope and efficien-
cy of this approach were explored for the synthesis of a wide variety of 
substituted indeno[1,2-b]pyridines and results are summarized in Table 
2. 

A wide range of aldehydes with both electron-donating and elec-
tron-withdrawing substituents were also converted to the corresponding 
indeno[1,2-b]pyridines in excellent yield and purity as outlined in table 
2. 

It has been shown that the electronic characteristics of the substit-
uents have little impact on the efficiency of this reaction. For example, 
Aromatic aldehydes bearing an electron-withdrawing group (e.g., 4-Cl, 
3-NO2, 4-NO2, 4-Br, or 4-F) group reacted efficiently to afford the cor-
responding products in good to excellent yields (85−93%). For ketone 
substrates carrying an electron-donating group on the benzene ring, sat-
isfactory high yields were also noted. Notably, electron-sterically hin-
dered (2-Cl and 2,4-di-Cl) substrates reacted well to give the expected 
products in good yields (80−85%, 5c-5e).

A possible mechanism for the formation of indeno[1,2-b]pyridines 
is figured in Scheme 2.

In this process, BFPAT can improve the electrophilic character of 
the electrophiles by virtue of its intrinsic Brønsted acidity which makes 
it able of bonding with the carbonyl oxygen. Moreover, the highly hy-
drophobic wall of a moiety of BFPAT effectively repels H2O produced 
by condensation. The superiority of BFPAT to similar catalysts such as 
pentafluorophenylammonium triflate (PFPAT) [13] and diphenylam-
monium triflate (DPAT) [40], is ascribed to the lower basicity of the 
(CF3)2C6H3NH2  counter amine compared to C6F5NH2 and Ph2NH.

It was suggested that the product 5 may form via the initial forma-
tion of intermediate I, which was obtained from the nucleophilic attack 
of 1,3-indanedione to the aldehyde. The second key intermediate is 

Scheme .1. Synthesis of indeno[1,2-b]pyridines using BFPAT organocatalyst.

Scheme.2. Probable mechanism for BFPAT-catalyzed Synthesis of indeno[1,2-b]
pyridines.

Table 1.

Effect of different BFPAT and solvent on the formation of 5a.

Entry
BFPAT amount 

(mol%)
Condition/solvent

Time (h)/

yieldb

1 0 rt/Et OH 24/N.R

2 5 rt/Et OH 3/80

3 10 rt/Et OH 2/90

4 10 rt/DMF 5/60

5 10 rt/CH3CN 5/70

6 10 rt/toluene 5/50

7 10 rt/THF 5/60

8 10 rt/CH2Cl2 5/50

9 15 rt/CH2Cl2 2/90

a Reaction condition: 4-Cl-benzaldehyde (1 mmol), acetophenone (1 mmo), 

1,3-indanedione (1 mmol), and ammonium acetate (1.2 mmol) in ethanol at room 

temperature in the presence of BFPAT.
b Isolated yield
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enamine II, which is formed from acetophenone and ammonium ace-
tate. Condensation of these two parts gives intermediate III, followed by 
intramolecular cyclization and air oxidation produces the final product.

It can be supposed that the water exclusion of BFPAT may favor both 
imine and intermediate I formation. In addition, (CF3)2C6H3NH2 easily 
separated from the reaction mixture after workup with distillation under 
reduced pressure ((CF3)2C6H3NH2: 85 °C/15 mmHg(lit.)). 

4. Conclusion

In summary, we have demonstrated an efficient and practical process 
for the synthesis of some indeno[1,2-b]pyridine derivatives in ethanol 
using BFPAT as a green, inexpensive, and powerful organocatalyst. The 
advantages offered by this method are: simple reaction condition, oper-
ational simplicity, a green and cost-effective catalyst, easy purification, 
and excellent yields. We would like to say that this strategy is environ-
mentally friendly, and is a new effective procedure for the synthesis of 
indeno[1,2-b]pyridine derivatives.
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