

Journal of Composites and Compounds

Choline chloride based eutectic solvent: a highly efficient reaction media for the synthesis of 3,4-dihydropyrimidin-2(1H)-thiones

Fatemeh Malamiri ^a, Rashid Badri ^a, Samad Khaksar ^{b, c *}, Peyman Salahshour ^c

^a Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

^b Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

^c School of Science and Technology, The University of Georgia, Tbilisi, Georgia

ABSTRACT

A mild and green protocol was developed for three-component, one pot synthesis of 3,4-dihydropyrimidin-2(1H)-thione derivatives in a deep eutectic solvent (DES) without the use of a catalyst or any other additive. DES based on choline chloride (ChCl) and urea offered high reaction yield and was proper for a wide range of aromatic aldehydes. In addition, after 3,4-dihydropyrimidin-2(1H)-thione synthesis, DES could be easily recycled and reused five times without any obvious changes in catalytic activity. In general, the procedure offers a number of benefits, including clean reaction profile, avoiding the use of typical toxic catalysts, an easy workup procedure, short reaction times, and low prices.

©2022 UGPH.

Peer review under responsibility of UGPH.

ARTICLE INFORMATION

Article history:

Received 2 May 2022

Received in revised form 27 June 2022

Accepted 13 August 2022

Keywords:

Deep Eutectic Solvent

Green solvent

Dihydropyrimidine

MulticomponentBiginelli condensation

1. Introduction

Recently, deep eutectic solvents (DESs) have attracted much consideration as a chemical reaction media in place of conventional volatile organic solvents, in organic synthesis for the construction of new materials [1-3]. These solvents are generally less expensive, biodegradable, [4] biocompatible, and non-toxic,[5] reinforcing the greenness of these media and can be used under less demanding reaction conditions, like anaerobic conditions or rigorously anhydrous [6-13]. In addition, DESs have been studied for their usage in pharmaceutical applications,[5] surfactant chemistry [14], and extraction [14].

Abbott et al. established the solvent foundation in 2003 [15] and reported that a blend of ChCl and urea could produce a DES by hydrogen bond interactions, which appeared as a liquid state under typical conditions (Fig.1). Owing to its low toxicity, biodegradability, low cost, ChCl has been widely employed as the acceptor of hydrogen bond to prepare DES with inexpensive hydrogen bond donor including glycerol, carboxylic acids, or urea [16].

Pyrimidine derivatives including 3,4-dihydropyrimidin-2(1H)-thiones and 3,4-dihydropyrimidin-2(1H)-ones are Biginelli reaction products [17]. Due to their broad spectrum of biological activities [18], they are used in medicinal chemistry [19]. These compounds [20] possess various biological activities [21] like antibacterial, antiviral, calcium channel blockers, anti-tumor, neuropeptide Y (NPY) antagonists, α -1-antagonists, etc [22, 23].

Various other synthetic analogs such as monastrol [24], L-771,688 [25], and SQ 32926 [26] have been developed (Fig. 1). Monastrol was identified as a potent anticancer agent and has an ability to cross the cell membrane by special preventing the motor activity of mitotic kinesin Eg5. In addition, monastrol is considered as a lead for the expansion of newer anti-cancer drugs [27, 28]. Promising activity against cancer also is observed with Piperastrol and Mon-97 [13].

In view of these useful properties, there has been a continuous interest in the expansion of facile synthetic protocols for the construction of pyrimidine derivatives. Three-component one-pot condensation of β -ketoester, aldehyde, and thiourea/ urea proposed by Biginelli is the straightforward and most simple route to synthesize dihydropyrimidines [29]. Nonetheless, the low yields, prolonged reaction durations, and severe conditions of this reaction—especially when substituted aliphatic and aromatic aldehydes are used—limit its practical use [30]. To address these drawbacks, different methodologies for the synthesis of dihydropyrimidines have been reported to modify [31] and improve this reaction by ionic liquids, ultrasound irradiation, microwave irradiation, different types of phase transfer, enzyme, nanoparticle [32], metal oxide [33], base, and acidic catalysts [34-44]. However, some of the recent literature techniques have shortcomings such as prolonged reaction times, use of expensive, corrosive/toxic, metal-based catalysts [45], unsatisfactory yields, and extractive isolation of the product using hazardous organic solvents, which restricts their application owing to environmental [46] and financial concerns. Therefore, the development of new effective

* Corresponding author: Samad Khaksar; E-mail: s.khaksar@ug.edu.ge, S.khaksar@iauamol.ac.ir

Table 1.

Synthesis of 3,4-dihydropyrimidin-2(1H)-thiones in DES.

Entry	Carbonyl group	R ₁	Time(min)	Product	Yield	mp ^o C ^{ref}
1		Me	60	4a	90	220-222 ³⁰
2		Et	60	4b	88	207-209 ³³
3		Et	50	4c	91	192-194 ³³
4		Et	50	4d	85	111-113 ³²
5		Et	60	4e	88	190-191 ³³
6		Et	50	4f	90	186-187 ³⁰
7		Et	90	4g	93	216-218 ²⁶
8		Me	90	4h	90	176-178 ²⁶
9		Et	100	4k	92	181-183 ²⁶
10		Et	110	4l	90	210-212 ³⁰
11		Et	120	4m	92	150-152 ³³
12		Et	120	4n	92	204-206 ³³

synthetic protocols is highly desirable.

In continuation of research interest in the development of greener and more efficient protocols for organic synthesis [47-51], we report the application of a urea and ChCl-based DES as media to synthesize

3,4-dihydropyrimidin-2(1H)-thiones compound through a three-component, one-pot reaction of an aldehyde, a β -ketoester, and ammonium thiocyanate (NH_4SCN) in place of thiourea (Scheme 2). The weakly acidic nature of NH_4SCN has been reported to cause the acceleration of

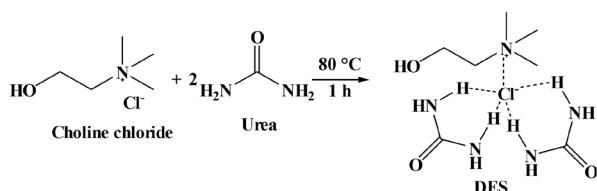
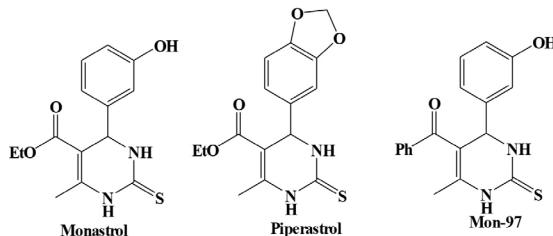



Fig. 1. DES ChCl/urea preparation.

Scheme 1. Examples of biologically and pharmaceutically important 3,4-dihydropyrimidin-2(1H)-thiones.

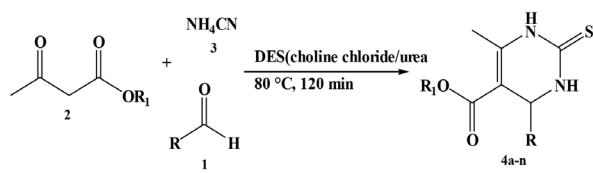
reaction rate, providing higher yields, and shorter reaction time. Being safer, cheaper, and readily available are the other reasons for the usage of NH_4SCN in the synthesis of 3,4-dihydropyrimidin-2(1H)-thiones compound [52, 53].

2. Experimental

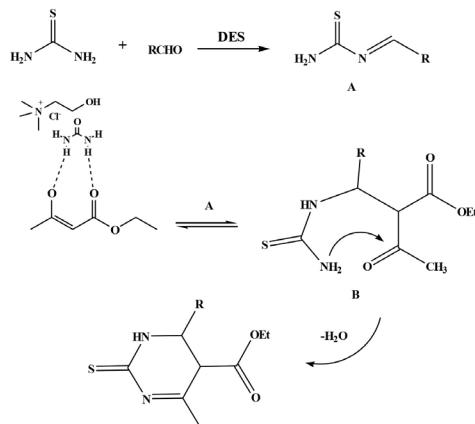
2.1. Method for preparing 3,4-dihydropyrimidin-2(1H)-thiones

All the analytical grade chemicals with the purity of $\geq 95\%$ were purchased from Merck (Darmstadt, Germany) and used without additional purification.

An aldehyde (2 mmol), a β -ketoester (2 mmol), ammonium thiocyanate (2.4 mmol), and DES (choline chloride/urea 1:2) were mixed under continuous and vigorous stirring at 80 °C. Thin layer chromatography was used to monitor the reaction progress. The product was extracted with ethyl acetate and dried over sodium sulphate before being vacuum evaporated. To obtain the required 3,4-dihydropyrimidin-2(1H)-thione, the residue was purified on a silica gel using an ethyl acetate/hexane combination [54].


The product was characterized by comparing the physical and spectral data of the products to those of authentic samples [53].

3. Results and discussion


Initial preparation of DES (ChCl / Urea) involved mixing ChCl and urea at 80°C until a bright solution was formed (Scheme 1). The produced transparent homogeneous liquid was then progressively cooled to ambient temperature. The prepared DES was used as a solvent for the Table 1.

Effect of different solvent on formation of 4a.

Entry	Temperature °C	Solvent	Time (min/yield)
1	reflux	Isopropyl alchol	180/80
2	reflux	CH_3CN	240/82
3	reflux	Water	350/30
4	reflux	THF	300/75
5	110	DMF	180/85
6	reflux	Toluence	240/80
7	80	DES	60/90

Scheme 2. Synthesis of 3,4-dihydropyrimidin-2(1H)-thiones via a three-component Biginelli reaction in DES.

Scheme 3. Proposed mechanism for the synthesis of 3,4-dihydropyrimidin-2(1H)-thiones.

Biginelli reaction.

Promisingly, it was discovered that with the simple blending of ethyl acetoacetate (2 mmol), ammonium thiocyanate (2.4 mmol), and benzaldehyde (2 mmol) in Urea/ChCl (2 mL), the reaction proceeded rapidly, producing the equivalent 5-Methoxycarbonyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-thione compound with 90% efficiency within 60 minutes (Table 1, entry 1). The positive impact of DEC on the reaction yield was also reported by Cui et al. [55] (yield 88%) and Pawar et al. [56] (yield 81%).

The influence of several solvents (e.g., Isopropyl alcohol, CH_3CN , THF, DMF, toluene, and H_2O) on the reaction time and yield was also examined (Table 2, entries 1–7). DES offered the greatest yield at 80°C after 60 minutes (Table 2, entry 7).

To investigate the applicability of reaction, we employed a wide range of substituted aromatic aldehydes with β -ketoesters for preparing a vast type of 3,4-dihydropyrimidin-2(1H)-thiones compound (Table 1).

As listed in the Table 1, aromatic aldehydes having either electron-withdrawing or electron-donating substituents at the ortho–para positions reacted quickly and smoothly to give 3,4-dihydropyrimidin-2(1H)-thiones compound in high purity and yield. It was demonstrated that the electronic effects of the substituents on the aromatic ring had very little impact on the reaction yield. Aldehydes with electron-withdrawing groups was also found to consume less reaction times than those with electron-donating groups (Table 1 entries 9–12), in addition, ortho substituted aldehydes time (Table 1 entries 7,8) did the reactions in longer times than para substituted ones, which can be described by the steric hindrance effect. This is in accordance with previous report [57]. This observation demonstrated that 3,4-dihydropyrimidin-2(1H)-thione compound material can be formed with the variation of time.

For environmental and economic considerations, it is also important

Table 3.

Recyclability of DES for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-thione.

Run	1	2	3	4	5
Yield	90	90	88	85	85

to take the recycling and reuse of DESs into account. In the present study, DES was reused to synthesize 3, 4-dihydropyrimidin-2(1H)-thiones from benzaldehyde and methyl acetoacetate under optimized reaction parameters. To recycle DES, water was added to the reaction mixture (4a). Then the unrefined insoluble product was separated and DES was obtained after water evaporation at 90 °C temperature under vacuum conditions. The recycled DES was reused for another reaction under the same condition. As can be observed in Table 3, DES could be reused four times without substantial activity loss.

The reaction mechanism for the synthesis of 3, 4-dihydropyrimidin-2(1H)-thione is presented in Scheme 3. Regarding the reaction mechanism, isomerization of ammonium thiocyanate to thiourea would be the first step. The aldehyde activated by DES undergoes nucleophilic addition by thiourea, leading to intermediate A. Thereafter, the intermediate A reacts with the enolate form of ethyl acetoacetate to give intermediate B, followed by intramolecular cyclization to afford the final product.

4. Conclusion

In summary, we have demonstrated an effective and green process for the 3,4-dihydropyrimidin-2(1H)-thiones synthesis employing an eutectic strong solvent as a green reaction medium. The important features of this protocol are: (1) using DES as a readily available, inexpensive, and efficient medium, (2) simple reaction condition (3) green and recyclable solvent system, (4) easy purification, and high yields. The primary process for making 3,4-dihydropyrimidin-2(1H)-thione compound derivatives is described here, and we wish to emphasize that it is an environmentally benign process.

Spectroscopic data for selected examples follow:

5-Methoxycarbonyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-thione: (4a) ¹H NMR (DMSO-*d*₆, 400 MHz): δ 2.2 (s, 3H), 5.3 (d, *J* = 4.0 Hz, 1H), 6.2 (s, 1H), 7.0-7.2 (m, 5H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 18.5, 51.3, 54.8, 101.2, 116.1, 128.1, 128.3, 139.5, 146.8, 153.6, 161.1, 163.5, 168.8.

5-ethoxycarbonyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-thione: (4b) ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.11 (t, *J* = 7.1 Hz, 3H), 2.20 (s, 3H), 4.02 (q, *J* = 7.1 Hz, 2H), 5.30 (s, 1H), 7.99 (s, 1H), 8.17-7.62 (m, 4H), 9.38 (brs, 1H, NH); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 14.3, 18.3, 54.0, 59.8, 98.7, 121.5, 122.8, 131.1, 133.5, 146.3, 153.1, 167.5, 175.1.

5-ethoxycarbonyl-4(4-chlorophenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-thione: (4c) ¹H NMR (400 MHz, DMSO-*d*6): δ 1.10 (t, *J* = 7.0 Hz, 3H), 2.28 (s, 3H), 3.95-4.04 (m, 2H), 5.17 (s, 1H), 7.23 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 8.3 Hz, 2H), 9.65 (brs, 1H, NH), 10.36 (brs, 1H, NH); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 14.5, 18.2, 53.7, 59.8, 99.4, 128.4, 128.8, 132.3, 142.3, 142.5, 149.2, 153.5, 169.6.

5-ethoxycarbonyl-4(3-hydroxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-thione: (4k) ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.1 (t, *J* = 7.2 Hz), 2.2 (s, 3H), 4.0 (q, 2H), 5.0 (d, 1H), 6.6 (d, 3H), 7.1 (m, 1H), 9.4 (s, 1H), 9.5 (d, 1H), 10.2 (s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 14.0, 53.9, 100.6, 113.3, 114.5, 117.1, 129.5, 144.8, 157.5, 165.1, 174.1.

5-ethoxycarbonyl-4(4-methoxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-thione (4m) ¹H NMR (400 MHz, DMSO-*d*6): δ 1.11 (t, *J* = 7.1 Hz, 3H), 2.28 (s, 3H), 3.72 (s, 3H), 4.00 (q, *J* = 7.1 Hz, 2H), 5.11 (d, *J* = 3.6 Hz, 1H), 6.89 (d, *J* = 8.6 Hz, 2H), 7.12 (d, *J* = 8.6 Hz, 2H), 9.57 (s, 1H, NH), 10.26 (brs, 1H, NH); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 14.5, 18.1, 53.8, 55.5, 59.8, 100.1, 114.2, 127.8, 137.6, 148.5, 153.5, 158.8, 172.8.

Acknowledgments

The authors thank the Research Committee of Islamic Azad University (Ahvaz&Ayatollah Amoli Branch) and University of Georgia (Tbilisi) for financial support of this work.

REFERENCES

- [1] P. Liu, J.-W. Hao, L.-P. Mo, Z.-H. Zhang, Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions, *RSC Advances* 5(60) (2015) 48675-48704.
- [2] C. Ruß, B. König, Low melting mixtures in organic synthesis—an alternative to ionic liquids?, *Green Chemistry* 14(11) (2012) 2969-2982.
- [3] Q. Zhang, K.D.O. Vigier, S. Royer, F. Jerome, Deep eutectic solvents: syntheses, properties and applications, *Chemical Society Reviews* 41(21) (2012) 7108-7146.
- [4] Y. Yu, X. Lu, Q. Zhou, K. Dong, H. Yao, S. Zhang, Biodegradable naphthenic acid ionic liquids: synthesis, characterization, and quantitative structure–biodegradation relationship, *Chemistry—A European Journal* 14(35) (2008) 11174-11182.
- [5] K.D. Weaver, H.J. Kim, J. Sun, D.R. MacFarlane, G.D. Elliott, Cyto-toxicity and biocompatibility of a family of choline phosphate ionic liquids designed for pharmaceutical applications, *Green Chemistry* 12(3) (2010) 507-513.
- [6] S.K. Ghosh, R. Nagarajan, Deep eutectic solvent mediated synthesis of quinazolinones and dihydroquinazolinones: synthesis of natural products and drugs, *RSC Advances* 6(33) (2016) 27378-27387.
- [7] P.M. Pawar, K.J. Jarag, G.S. Shankarling, Environmentally benign and energy efficient methodology for condensation: an interesting facet to the classical Perkin reaction, *Green Chemistry* 13(8) (2011) 2130-2134.
- [8] G. Imperato, E. Eibler, J. Niednermaier, B. König, Low-melting sugar–urea–salt mixtures as solvents for Diels–Alder reactions, *Chemical Communications* (9) (2005) 1170-1172.
- [9] F. Ilgen, B. König, Organic reactions in low melting mixtures based on carbohydrates and L-carnitine—a comparison, *Green Chemistry* 11(6) (2009) 848-854.
- [10] G. Imperato, S. Höger, D. Lenoir, B. Koenig, Low melting sugar–urea–salt mixtures as solvents for organic reactions—estimation of polarity and use in catalysis, *Green Chemistry* 8(12) (2006) 1051-1055.
- [11] U.B. Patil, A.S. Singh, J.M. Nagarkar, Choline chloride based eutectic solvent: an efficient and reusable solvent system for the synthesis of primary amides from aldehydes and from nitriles, *RSC Advances* 4(3) (2014) 1102-1106.
- [12] A. Shaabani, S.E. Hooshmand, M.T. Nazeri, R. Afshari, S. Ghasemi, Deep eutectic solvent as a highly efficient reaction media for the one-pot synthesis of benzo-fused seven-membered heterocycles, *Tetrahedron Letters* 57(33) (2016) 3727-3730.
- [13] S. Gore, S. Baskaran, B. Koenig, Efficient synthesis of 3, 4-dihydropyrimidin-2-ones in low melting tartaric acid–urea mixtures, *Green Chemistry* 13(4) (2011) 1009-1013.
- [14] Y. Dai, J. van Spronsen, G.-J. Witkamp, R. Verpoorte, Y.H. Choi, Ionic liquids and deep eutectic solvents in natural products research: mixtures of solids as extraction solvents, *Journal of natural products* 76(11) (2013) 2162-2173.
- [15] A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambayrahaj, Novel solvent properties of choline chloride/urea mixtures, *Chemical Communications* (1) (2003) 70-71.
- [16] R. Gautam, N. Kumar, J.G. Lynam, Theoretical and experimental study of choline chloride-carboxylic acid deep eutectic solvents and their hydrogen bonds, *Journal of Molecular Structure* 1222 (2020) 128849.
- [17] P. Biginelli, Aldehyde-urea derivatives of aceto- and oxaloacetic acids, *Gazz. chim. ital* 23(1) (1893) 360-413.
- [18] M. Karimi, E. Sadeghi, S.K. Bigdeli, M. Zahedifar, Synthesis, feasibility study of production of singlet oxygen and hydroxyl radical and performance in antibacterial activity of ZnS: Eu QDs, *Journal of Composites and Compounds* 4(11) (2022) 77-82.
- [19] R. Kaur, S. Chaudhary, K. Kumar, M.K. Gupta, R.K. Rawal, Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review, *European journal of medicinal chemistry* 132 (2017) 108-134.
- [20] A.H. Saleh, D. Kumar, I. Sirakov, P. Shafiee, M. Arefian, Application of nano compounds for the prevention, diagnosis, and treatment of SARS-coronavirus: A review, *Journal of Composites and Compounds* 3(9) (2021) 230-246.
- [21] A. Bakhtiari, A. Cheshmi, M. Naeimi, S.M. Fathabad, M. Aliashgari, A.M. Chahardehi, S. Hassani, V. Elhami, Synthesis and characterization of the novel 80S bioactive glass: bioactivity, biocompatibility, cytotoxicity, *Journal of Composites and Compounds* 2(4) (2020) 110-114.
- [22] H. Murata, H. Ishitani, M. Iwamoto, Synthesis of Biginelli dihydropyrim-

idinone derivatives with various substituents on aluminium-planted mesoporous silica catalyst, *Organic & biomolecular chemistry* 8(5) (2010) 1202-1211.

[23] T.U. Mayer, T.M. Kapoor, S.J. Haggarty, R.W. King, S.L. Schreiber, T.J. Mitchison, Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen, *Science* 286(5441) (1999) 971-974.

[24] D. Russowsky, R.m.F. Canto, S.A. Sanches, M.G. D’Oca, Á. de Fátima, R.A. Pilli, L.K. Kohn, M.A. Anto’nio, J.E. de Carvalho, Synthesis and differential anti-proliferative activity of Biginelli compounds against cancer cell lines: monastrol, oxo-monastrol and oxygenated analogues, *Bioorganic chemistry* 34(4) (2006) 173-182.

[25] R.S. Chang, T.-B. Chen, S.S. O’Malley, D.J. Pettibone, J. DiSalvo, B. Francis, M.G. Bock, R. Freidinger, D. Nagarathnam, S.W. Miao, In vitro studies on L-771,688 (SNAP 6383), a new potent and selective α 1A-adrenoceptor antagonist, *European journal of pharmacology* 409(3) (2000) 301-312.

[26] K.S. Atwal, B.N. Swanson, S.E. Unger, D.M. Floyd, S. Moreland, A. Hedberg, B.C. O'Reilly, Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1, 2, 3, 4-tetrahydro-6-methyl-5-pyrimidinocarboxylic acid esters as orally effective antihypertensive agents, *Journal of medicinal chemistry* 34(2) (1991) 806-811.

[27] R.N. Azadani, M. Sabbagh, H. Salehi, A. Cheshmi, A. Raza, B. Kumari, G. Erabi, Sol-gel: Uncomplicated, routine and affordable synthesis procedure for utilization of composites in drug delivery, *Journal of Composites and Compounds* 3(6) (2021) 57-70.

[28] P. Fazlali, A. Mahdian, M.S. Soheilifar, S.M. Amininasab, P. Shafiee, I.A. Wani, A.M.A.A. AL-Mokaram, Nanobiosensors for early detection of neurodegenerative disease, *Journal of Composites and Compounds* 4(10) (2022) 24-36.

[29] P. Biginelli, Aldureides of ethylic acetoacetate and ethylic oxalacetate, *Gazz. Chim. Ital* 23 (1893) 360-416.

[30] V.P.S. Sidhu, R. Borges, M. Yusuf, S. Mahmoudi, S.F. Ghorbani, M. Hosseinkia, P. Salahshour, F. Sadeghi, M. Arefian, A comprehensive review of bioactive glass: synthesis, ion substitution, application, challenges, and future perspectives, *Journal of Composites and Compounds* 3(9) (2021) 247-261.

[31] S. Padervand, M. Amiri, Optimization of electrolyte concentration for surface modification of tantalum using plasma electrolytic nitridation, *International Journal of Refractory Metals and Hard Materials* 87 (2020) 105146.

[32] S. Askari, M. Ghashang, G. Sohrabi, Synthesis and mechanical properties of $\text{Bi}_2\text{O}_3\text{-Al}_4\text{Bi}_2\text{O}_9$ nanopowders, *Journal of Composites and Compounds* 2(5) (2020) 171-174.

[33] P. Shafiee, M.R. Nafchi, S. Eskandarinezhad, S. Mahmoudi, E. Ahmadi, Sol-gel zinc oxide nanoparticles: advances in synthesis and applications, *Synthesis and Sintering* 1(4) (2021) 242-254.

[34] N. Ahmed, Z.N. Siddiqui, Sulphated silica tungstic acid as a highly efficient and recyclable solid acid catalyst for the synthesis of tetrahydropyrimidines and dihydropyrimidines, *Journal of Molecular Catalysis A: Chemical* 387 (2014) 45-56.

[35] S.D. Salim, K.G. Akamanchi, Sulfated tungstate: an alternative, eco-friendly catalyst for Biginelli reaction, *Catalysis Communications* 12(12) (2011) 1153-1156.

[36] C.K. Khatri, D.S. Rekunge, G.U. Chaturbhuj, Sulfated polyborate: a new and eco-friendly catalyst for one-pot multi-component synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones/thiones via Biginelli reaction, *New Journal of Chemistry* 40(12) (2016) 10412-10417.

[37] S. Khaksar, S.M. Vahdat, R.N. Moghaddamnejad, Pentafluorophenylammonium triflate: an efficient, practical, and cost-effective organocatalyst for the Biginelli reaction, *Monatshefte für Chemie-Chemical Monthly* 143(12) (2012) 1671-1674.

[38] O.M. Singh, M.L. Singh, S.J. Singh, SNCL2-CATALYZED SYNTHESIS OF DIHYDROPRIMIDINONES UNDER SOLVENT-FREE CONDITIONS, *Heterocyclic Communications* 13(5) (2007) 277-282.

[39] J. Safari, S. Gandomi-Ravandi, S. Ashiri, Organosilane sulfonated graphene oxide in the Biginelli and Biginelli-like reactions, *New Journal of Chemistry* 40(1) (2016) 512-520.

[40] S. Nagarajan, T.M. Shaikh, E. Kandasamy, Synthesis of 1-alkyl triazolium triflate room temperature ionic liquids and their catalytic studies in multi-component Biginelli reaction, *Journal of Chemical Sciences* 127(9) (2015) 1539-1545.

[41] Q. Liu, N. Pan, J. Xu, W. Zhang, F. Kong, Microwave-assisted and iodine-catalyzed synthesis of dihydropyrimidin-2-thiones via biginelli reaction under solvent-free conditions, *Synthetic Communications* 43(1) (2013) 139-146.

[42] D. Bhuyan, M. Saikia, L. Saikia, ZnO nanoparticles embedded in SBA-15 as an efficient heterogeneous catalyst for the synthesis of dihydropyrimidinones via Biginelli condensation reaction, *Microporous and Mesoporous Materials* 256 (2018) 39-48.

[43] M. Moghaddas, A. Davoodnia, M.M. Heravi, N. Tavakoli-Hoseini, Sulfonated carbon catalyzed Biginelli reaction for one-pot synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones and-thiones, *Chinese Journal of Catalysis* 33(4-6) (2012) 706-710.

[44] S. Padervand, S. Sarihi, S. Mousavi Khoei, N. Shakiba, Determining the Optimal Processing Time for Tantalum Surface Modification through Plasma Electrolytic Nitridation, *Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques* 15(4) (2021) 877-884.

[45] S. Padervand, S. Khoei, N. Shakiba, Access to Optimum Working Voltage of Plasma Electrolytic Nitridation of Tantalum Alloys, *Surface Engineering and Applied Electrochemistry* 56(6) (2020) 704-711.

[46] N. Aboualigaledari, M. Rahmani, A review on the synthesis of the TiO₂-based photocatalyst for the environmental purification, *Journal of Composites and Compounds* 3(6) (2021) 25-42.

[47] A.J. Rad, Synthesis of copper oxide nanoparticles on activated carbon for pollutant removal in Tartrazine structure, *Journal of Composites and Compounds* 2(3) (2020) 99-104.

[48] E.M. Abdelraheem, S. Khaksar, K. Kurpiewska, J. Kalinowska-Tluščík, S. Shaabani, A. Dömling, Two Step Macrocycle Synthesis by Classical Ugi Reaction, *The Journal of organic chemistry* (2018).

[49] S. Khaksar, M. Gholami, An eco-benign and highly efficient access to dihydro-1H-indeno [1, 2-b] pyridines in 2, 2, 2-trifluoroethanol, *Journal of Molecular Liquids* 196 (2014) 159-162.

[50] S. Khaksar, H. Radpeyma, Pentafluorophenylammonium triflate: A highly efficient catalyst for the synthesis of quinoxaline derivatives in water, *Comptes Rendus Chimie* 17(10) (2014) 1023-1027.

[51] S. Khaksar, S.M. Talesh, Three-component one-pot synthesis of 2, 3-dihydroquinazolin-4 (1H)-one derivatives in 2, 2, 2-trifluoroethanol, *Comptes Rendus Chimie* 15(9) (2012) 779-783.

[52] M.R. Nafchi, R. Ebrahimi-kahrizsangi, Synthesis of Zn-Co-TiO₂ nanocomposite coatings by electrodeposition with photocatalytic and antifungal activities, *Journal of Composites and Compounds* 3(9) (2021) 213-217.

[53] C.K. Khatri, S.M. Potadar, G.U. Chaturbhuj, A reactant promoted solvent free synthesis of 3, 4-dihydropyrimidin-2 (1H)-thione analogues using ammonium thiocyanate, *Tetrahedron Letters* 58(18) (2017) 1778-1780.

[54] S. Mohammadi, Z. Mohammadi, Functionalized NiFe₂O₄/mesopore silica anchored to guanidine nanocomposite as a catalyst for synthesis of 4H-chromenes under ultrasonic irradiation, *Journal of Composites and Compounds* 3(7) (2021) 84-90.

[55] Y. Cui, C. Li, M. Bao, Deep eutectic solvents (DESs) as powerful and recyclable catalysts and solvents for the synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones/thiones, *Green Processing and Synthesis* 8(1) (2019) 568-576.

[56] N.S. Pawar, P.N. Patil, R.N. Pachpande, An Efficient Synthesis and Antibacterial Activity of Some Novel 3, 4-Dihydropyrimidin-2-(1H)-Ones, *Chemistry Proceedings* 8(1) (2021) 37.

[57] A. Mobinikhaledi, A. Yazdanipour, M. Ghashang, A green one-pot Biginelli synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones catalyzed by novel *Aurivillius* nanostructures under solvent-free conditions, *Reaction Kinetics, Mechanisms and Catalysis* 119(2) (2016) 511-522.