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1. Introduction

Recently, deep eutectic solvents (DESs) have attracted much consid-
eration as a chemical reaction media in place of conventional volatile 
organic solvents, in organic synthesis for the construction of new mate-
rials [1-3]. These solvents are generally less expensive, biodegradable, 
[4] biocompatible, and non-toxic,[5] reinforcing the greenness of these 
media and can be used under less demanding reaction conditions, like 
anaerobic conditions or rigorously anhydrous [6-13]. In addition, DESs 
have been studied for their usage in pharmaceutical applications,[5] sur-
factant chemistry [14], and extraction [14].

Abbott et al. established the solvent foundation in 2003 [15] and re-
ported that a blend of ChCl and urea could produce a DES by hydrogen 
bond interactions, which appeared as a liquid state under typical condi-
tions (Fig.1). Owing to its low toxicity, biodegradability, low cost, ChCl 
has been widely employed as the acceptor of hydrogen bond to prepare 
DES with inexpensive hydrogen bond donor including glycerol, carbox-
ylic acids, or urea [16]. 

Pyrimidine derivatives including 3,4-dihydropyrimidin-2(1H)-thi-
ones and 3,4-dihydropyrimidin-2(1H)-ones are Biginelli reaction prod-
ucts [17]. Due to their broad spectrum of biological activities [18], they 
are used in medicinal chemistry [19]. These compounds [20] possess 
various biological activities [21] like antibacterial, antiviral, calci-
um channel blockers, anti-tumor, neuropeptide Y (NPY) antagonists, 
α-1-antagonists, etc [22, 23].

Various other synthetic analogs such as monastrol [24], L-771,688 
[25], and SQ 32926 [26] have been developed (Fig. 1). Monastrol was 
identified as a potent anticancer agent and has an ability to cross the cell 
membrane by special preventing the motor activity of mitotic kinesin 
Eg5. In addition, monastrol is considered as a lead for the expansion of 
newer anti-cancer drugs [27, 28]. Promising activity against cancer also 
is observed with Piperastrol and Mon-97 [13].

In view of these useful properties, there has been a continuous in-
terest in the expansion of facile synthetic protocols for the construction 
of pyrimidine derivatives. Three-component one-pot condensation of 
β-ketoester, aldehyde, and thiourea/ urea proposed by Biginelli is the 
straightforward and most simple route to synthesize dihydropyrimidines 
[29]. Nonetheless, the low yields, prolonged reaction durations, and se-
vere conditions of this reaction—especially when substituted aliphatic 
and aromatic aldehydes are used—limit its practical use [30]. To address 
these drawbacks, different methodologies for the synthesis of dihydro-
pyrimidines have been reported to modify [31] and improve this reaction 
by ionic liquids, ultrasound irradiation, microwave irradiation, different 
types of phase transfer, enzyme, nanoparticle [32], metal oxide [33], 
base, and acidic catalysts [34-44]. However, some of the recent litera-
ture techniques have shortcomings such as prolonged reaction times, use 
of expensive, corrosive/toxic, metal-based catalysts [45], unsatisfactory 
yields, and extractive isolation of the product using hazardous organic 
solvents, which restricts their application owing to environmental [46] 
and financial concerns. Therefore, the development of new effective 
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A mild and green protocol was developed for three-component, one pot synthesis of 3,4-dihydropyrimi-
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synthetic protocols is highly desirable.
In continuation of research interest in the development of greener 

and more efficient protocols for organic synthesis [47-51], we report 
the application of a urea and ChCl-based DES as media to synthesize 

3,4-dihydropyrimidin-2(1H)-thiones compound through a three-com-
ponent, one-pot reaction of an aldehyde, a β-ketoester, and ammonium 
thiocyanate (NH4SCN) in place of thiourea (Scheme 2). The weakly 
acidic nature of NH4SCN has been reported to cause the acceleration of 

Table 1.
Synthesis of 3,4-dihydropyrimidin-2(1H)-thiones in DES.

Entry Carbonyl group R1 Time(min) Product Yield mp°Cref

1 Me 60 4a 90 220-22230

2 Et 60 4b 88 207-20933

3 Et 50 4c 91 192-19433

4 Et 50 4d 85 111-11332

5 Et 60 4e 88 190-19133

6 Et 50 4f 90 186-18730

7 Et 90 4g 93 216-21826

8 Me 90 4h 90 176-17826

9 Et 100 4k 92 181-18326

10 Et 110 4l 90 210-21230

11 Et 120 4m 92 150-15233

12 Et 120 4n 92 204-20633
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reaction rate, providing higher yields, and shorter reaction time. Being 
safer, cheaper, and readily available are the other reasons for the usage of 
NH4SCN in the synthesis of 3,4-dihydropyrimidin-2(1H)-thiones com-
pound [52, 53]. 

2. Experimental

2.1. Method for preparing 3,4-dihydropyrimidin-2(1H)-thiones 

 All the analytical grade chemicals with the purity of ≥ 95 were pur-
chased from Merck (Darmstadt, Germany) and used without additional 
purification.

An aldehyde (2 mmol), a β-ketoester (2 mmol), ammonium thiocya-
nate (2.4mmol), and DES (choline chloride/urea 1:2) were mixed under 
continuous and vigorous stirring at 80 °C. Thin layer chromatography 
was used to monitor the reaction progress. The product was extracted 
with ethyl acetate and dried over sodium sulphate before being vacuum 
evaporated. To obtain the required 3,4-dihydropyrimidin-2(1H)-thione, 
the residue was purified on a silica gel using an ethyl acetate/hexane 
combination [54].

The product was characterized by comparing the physical and spec-
tral data of the products to those of authentic samples [53]. 

3. Results and discussion

Initial preparation of DES (ChCl / Urea) involved mixing ChCl and 
urea at 80˚C until a bright solution was formed (Scheme 1). The pro-
duced transparent homogeneous liquid was then progressively cooled to 
ambient temperature. The prepared DES was used as a solvent for the 

Biginelli reaction. 
Promisingly, it was discovered that with the simple blending of 

ethyl acetoacetate (2 mmol), ammonium thiocyanate (2.4 mmol), and 
benzaldehyde (2 mmol) in Urea/ChCl (2 mL), the reaction proceeded 
rapidly, producing the equivalent 5-Methoxycarbonyl-6-methyl-4-phe-
nyl-3,4-dihydropyrimidin-2(1H)-thione compound with 90% efficiency 
within 60 minutes (Table 1, entry1). The positive impact of DEC on the 
reaction yield was also reported by Cui et al. [55] (yield 88%) and Pawar 
et al. [56] (yield 81%). 

The influence of several solvents (e.g., Isopropyl alcohol, CH3CN, 
THF, DMF, toluene, and H2O) on the reaction time and yield was also 
examined (Table 2, entries1–7). DES offered the greatest yield at 80°C 
after 60 minutes (Table 2, entry 7).

To investigate the applicability of reaction, we employed a wide 
range of substituted aromatic aldehydes with β-ketoesters for preparing 
a vast type of 3, 4-dihydropyrimidin-2(1H)-thiones compound (Table 1).

As listed in the Table 1, aromatic aldehydes having either elec-
tron-withdrawing or electron- donating substituents at the ortho–para 
positions reacted quickly and smoothly to give 3,4-dihydropyrimi-
din-2(1H)-thiones compound in high purity and yield. It was demonstrat-
ed that the electronic effects of the substituents on the aromatic ring had 
very little impact on the reaction yield. Aldehydes with electron-with-
drawing groups was also found to consume less reaction times than 
those with electron-donating groups (Table 1 entries 9-12), in addition, 
ortho substituted aldehydes time (Table 1 entries 7,8) did the reactions 
in longer times than para substituted ones, which can be described by the 
steric hindrance effect. This is in accordance with previous report [57]. 
This observation demonstrated that 3, 4-dihydropyrimidin-2(1H)-thione 
compound material can be formed with the variation of time.

For environmental and economic considerations, it is also important 

Fig. 1. DES ChCl/urea preparation.

Scheme 1. Examples of biologically and pharmaceutically important 3, 4-dihy-
dropyrimidin-2(1H)-thiones.

Scheme. 2. Synthesis of 3,4-dihydropyrimidin-2(1H)-thiones via a three-compo-
nent Biginelli reaction in DES.

Scheme. 3. Proposed mechanism for the synthesis of 3,4-dihydropyrimi-
din-2(1H)-thiones.

Table 3.
Recyclability of DES for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-thione.

Run 1 2 3 4 5

Yield 90 90 88 85 85

Table 1.
Effect of different solvent on formation of 4a.

Entry Temperature °C Solvent Time (min/yield)

1 reflux Isopropyl alchol 180/80

2 reflux CH3CN 240/82

3 reflux Water 350/30

4 reflux THF 300/75

5 110 DMF 180/85

6 reflux Toluence 240/80

7 80 DES 60/90
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to take the recycling and reuse of DESs into account. In the present 
study, DES was reused to synthesize 3, 4-dihydropyrimidin-2(1H)-thi-
ones from benzaldehyde and methyl acetoacetate under optimized re-
action parameters. To recycle DES, water was added to the reaction 
mixture (4a). Then the unrefined insoluble product was separated and 
DES was obtained after water evaporation at 90 °C temperature under 
vacuum conditions. The recycled DES was reused for another reaction 
under the same condition. As can be observed in Table 3, DES could be 
reused four times without substantial activity loss.

The reaction mechanism for the synthesis of 3, 4-dihydropyrim-
idin-2(1H)-thione is presented in Scheme 3. Regarding the reaction 
mechanism, isomerization of ammonium thiocyanate to thiourea would 
be the first step. The aldehyde activated by DES undergoes nucleophilic 
addition by thiourea, leading to intermediate A. Thereafter, the inter-
mediate A reacts with the enolate form of ethyl acetoacetate to give in-
termediate B, followed by intramolecular cyclization to afford the final 
product.

4. Conclusion

In summary, we have demonstrated an effective and green process 
for the 3,4-dihydropyrimidin-2(1H)-thiones synthesis employing an eu-
tectic strong solvent as a green reaction medium. The important features 
of this protocol are: (1) using DES as a readily available, inexpensive, 
and efficient medium, (2) simple reaction condition (3) green and recy-
clable solvent system, (4) easy purification, and high yields. The pri-
mary process for making 3,4-dihydropyrimidin-2(1H)-thione compound 
derivatives is described here, and we wish to emphasize that it is an 
environmentally benign process.

Spectroscopic data for selected examples follow:

5-Methoxycarbonyl-6-methyl-4-phenyl-3,4-dihydropyrimi-
din-2(1H)-thione: (4a) 1HNMR (DMSO-d6, 400 MHz): δ 2.2 (s, 3H), 
5.3 (d, J = 4.0 Hz, 1H), 6.2 (s, 1H), 7.0-7.2 (m, 5H); 3CNMR (DMSO-d6, 
100 MHz): δ 18.5, 51.3, 54.8, 101.2, 116.1, 128.1, 128.3, 139.5, 146.8, 
153.6, 161.1, 163.5, 168.8.

5-ethoxycarbonyl-6-methyl-4-phenyl-3,4-dihydropyrimi-
din-2(1H)-thione: (4b) 1H NMR (DMSO-d6, 400 MHz): δ 1.11 (t, J = 
7.1 Hz, 3H), 2.20 (s, 3H), 4.02 (q, J = 7.1 Hz, 2H), 5.30 (s, 1H), 7.99 (s, 
1H), 8.17-7.62 (m, 4H), 9.38 (brs,1H, NH); 13C NMR (DMSO-d6, 100 
MHz); δ 14.3, 18.3, 54.0, 59.8, 98.7, 121.5, 122.8, 131.1, 133.5, 146.3, 
153.1, 167.5, 175.1.

5-ethoxycarbonyl-4(4-chloroyphenyl)-6-methyl-3,4-dihydropy-
rimidin-2(1H)-thione (4c) 1H NMR (400 MHz, DMSO-d6): δ 1.10 (t, J 
= 7.0 Hz, 3H), 2.28 (s, 3H), 3.95–4.04 (m, 2H), 5.17 (s, 1H), 7.23 (d, J 
= 8.3 Hz,2H), 7.42 (d, J = 8.3 Hz, 2H), 9.65 (brs, 1H, NH), 10.36 (brs, 
1H, NH); 13C NMR (DMSO-d6, 100 MHz); δ 14.5, 18.2, 53.7, 59.8, 99.4, 
128.4, 128.8, 132.3, 142.3, 142.5, 149.2, 153.5, 169.6.

5-ethoxycarbonyl-4(3-hydroxyphenyl)-6-methyl-3,4-dihydropy-
rimidin-2(1H)-thione: (4k) 1HNMR (DMSO-d6, 400 MHz): δ 1.1 (t, J 
= 7.2 Hz), 2.2 (s, 3H), 4.0 (q, 2H), 5.0 (d, 1H), 6.6 (d, 3H), 7.1 (m, 1H), 
9.4(s, 1H), 9.5 (d, 1H), 10.2 (s, 1H); 13CNMR (DMSO-d6, 100 MHz): δ 
14.0, 53.9, 100.6, 113.3, 114.5, 117.1, 129.5, 144.8, 157.5, 165.1, 174.1.

5-ethoxycarbonyl-4(4-methoxyphenyl)-6-methyl-3,4-dihydropy-
rimidin-2(1H)-thione (4m) 1H NMR (400 MHz, DMSO-d6): δ 1.11 (t, J 
= 7.1 Hz, 3H,), 2.28 (s, 3H), 3.72 (s, 3H), 4.00 (q, J = 7.1 Hz, 2H), 5.11 
(d, J = 3.6 Hz, 1H), 6.89 (d, J = 8.6 Hz, 2H), 7.12 (d, J = 8.6 Hz, 2H), 
9.57 (s, 1H, NH), 10.26 (brs,1H, NH); 13C NMR (DMSO-d6, 100 MHz); 
δ 14.5, 18.1, 53.8, 55.5, 59.8, 100.1, 114.2, 127.8, 137.6, 148.5, 153.5, 
158.8, 172.8.
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