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1. Introduction

Because of the annual population growth, aging population incre-
ment, and high functional demands of younger people, requisition for ef-
fective and safe materials is significantly increasing [1]. Such materials 
are commonly used as replacement implants in the knees, hips, ears, and 
elbows in the human body. Steep growth in respect to knee arthroplasties 
and hip replacements is reported which is estimated to rise by 673% 

and 174% up to 2030. In addition, inflammation and trauma in the joint 
of bones (osteoarthritis), and bones weakening (Osteoporosis) are other 
factors implicated in the increment of implant surgery [2].

Metallic biomaterials are extensively utilized for manufacturing sur-
gical implants. Titanium and its alloys, 316L stainless steel (316L SS), 
and cobalt-based (Co-Cr) alloys are the most used metallic biomaterials. 
In addition, shape memory alloys e.g., magnesium (Mg), NiTi, and tan-
talum (Ta) are also developing as miscellaneous material implants [3, 
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A B S T R A C T A R T I C L E  I N F O R M A T I O N

Bacterial infection is one of the main reasons for the long-term failure of orthopedic implants. Despite remarkable 
progression in antimicrobial drugs, implant-associated infection (IAI) remains difficult to treat, which is resulted 
from bacterial resistance against antibiotics. As a result, there is an urgent need to develop alternative approaches. 
The present review highlights surface modification of the orthopedic implants as a promising approach to inhibit 
bacterial infection. This approach can be classified into two groups: (1) bacteriostatic (anti-adhesive), and (2) bac-
tericidal (contact-killing/release-killing) surfaces. Their combination, which is considered as bacteriostatic-bac-
tericidal bi-functional surface, can provide a more robust approach against dangerous pathogenic species. New 
approaches and future perspectives in this inspiring field are also provided.
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4]. Appropriate combinations of acceptable biocompatibility and well 
mechanical properties including hardness, strength, modulus, plasticity, 
fatigue life, toughness, etc. make them suitable for long-term implant ef-
ficiency in main load-bearing conditions for example in some dental and 
orthopedic implant applications. These features along with the relative 
facility of production using well-known and widely accessible methods 
such as machining, casting, and forging, and also additive manufactur-
ing techniques by sintering or selected laser melting lead to promoting 
and attention of metal used in the dentistry such as dental implants, res-
torations, and orthodontic wires and orthopedics such as pins, screws, 
and plates for artificial joints, artificial spines, fixations, etc. [5, 6].

However, because of IAI, the success of long-term implants could 
be challenging. It is one of the most prevalent reasons for orthopedic 
implants failure with catastrophic subsequences for patients including 
long-term hospitalization, functional incapacitation, revision surgeries, 
prolonged antibiotic therapy, and even mortality [7, 8]. Adhesion of mi-
croorganisms into the surface of implants represents an initial infection 
step, subsequently causing biofilm formation [9]. Well-known pathogen 
strains involved in infections are Gram-positive bacteria including S. 
(Staphylococcus) epidermidis, S. (Staphylococcus) aureus, S. (Strepto-
coccus) viridans, E. (Enterococcus) faecalis, and Gram-negative bac-
teria including P. (Pseudomonas) aeruginosa, E. (Escherichia) coli, P. 
(Proteus) mirabilis, K. (Klebsiella) pneumonia, and yeasts (Candida 
species) [10], among which P. aeruginosa and S. aureus are account-
able of the remarkable number of biofilm-related infections [11]. These 
infecting organisms are introduced into the implant surface by its con-
tamination during surgery, or the post-operative stage, and or by hema-
togenous bacteria spreading from presenting infections somewhere else 
in the host system [12]. 

Biofilm, as an organized microorganism aggregate within a self-pro-
duced extracellular polymeric substance (EPS), attach irreversibly to 
living or fetish surface [13, 14]. 5-35% volume of biofilm is microor-
ganisms while the remaining volume is constituted by EPS [15]. There 
are different component types in EPS including protein (>2%), polysac-
charides (1-2%), RNA (<1%), DNA molecules (<1%), ions (free and 
bound), and water (97%) [16]. Bacterial strains become resistant to mul-
tiple drugs through this barrier, which prevents them from penetrating 
immune system cells of the host and antibiotics. Furthermore, reacting 
antibiotics or biocides with constituents of the biofilm, makes them neu-
tralizing [17, 18]. In other words, biofilms cause to resist phagocytosis, 
antibiotics, disinfectants, and other ingredients of the innate-adaptive 
immune system of the host [19].

The concept of surface modification has gained widespread attention 
over the past few decades on account of their potential to durability ex-
tension of engineering and medical devices against destructive factors 
including wear, corrosion, infection, etc. without any changes in bulk 

properties [20-22]. Up to date, different modification strategies are be-
ing employed to fabricate antibacterial surfaces, which can prevent the 
colonization of bacteria and implant infection. Based on their functional 
principle, the antibacterial surfaces can be divided into two main groups: 
bacteriostatic (passive) and bactericidal (active), which are the subject 
of the present review [23].  Relying on their intrinsic repulsion property 
against bacteria, bacteriostatic surfaces are able to prevent or reduce the 
microorganisms attachment. This can be achieved by altering the surface 
chemistry (the passive polymer coatings) and topography (superhydro-
phobic surfaces).  Bactericidal coatings can disrupt bacterial membrane 
integrity by physical interaction through cationic compounds like poly-
mers (contact-killing) or by leaching inorganic or organic compounds 
from the substrate (release-killing) including antimicrobial peptides, 
metallic nanoparticles, elemental ions, and antibiotics. The bacteria-free 
surface can be maintained by such an approach without needing antibi-
otic therapy and any harmful chemicals [24].       

2. Biofilm Formation

irreversible bacterial adhesion threatens the long-term antibacterial
surface application, causing biofilms. The formation of biofilms on the 
surface of biomaterials, as a developmental process, comprises five main 
stages (Fig. 1): (1) initially reversible bacterial cell attachment to the 
implant surface, (2) irreversible adhesion, (3) aggregation and cumula-
tion of cells in multiple layers, (4) maturation and differentiation of bio-
film, and (5) cell detachment to new cycle initiation of biofilm formation 
somewhere else [25]. Once implanted, a layer called conditioning film 
which is mainly composed of proteins covers the surface of the bioma-
terial. This supports interactions between bacteria and the surface [26]. 
At first, weak attraction forces e.g., electrostatic, Lifshitz Van der Waals, 
hydrophobic forces mediate the surface protein-bacteria interactions and 
subsequently specific chemical interactions including adhesive proteins 
of bacteria and production of EPS strengthen bacteria adhesion to the 
surface [27, 28]. After that, bacteria cell duplication and division lead 
to the formation of micro-colonies, as the basic organized biofilm unit. 
Then, biofilm is matured by bacteria accumulation and intercellular ad-
hesion in multiple bacterial layers. Finally, because of nutrient depletion, 
the detachment of microorganisms from the biofilm occurs, entering into 
the bloodstream and spreading infections [29]. 

3. Bacteriostatic Surfaces

Characteristics of implants surface such as surface energy, surface
roughness and chemistry, surface potential, conductivity, and hydro-
philicity play an incisive role in the initial adhesion of bacteria to im-
plants and thereby the formation of biofilm. These characteristics can 
affect the conformation and/ or amount of adsorbed proteins, therefore, 
affecting subsequent bacterial adhesion and biofilm formation. Modi-
fication of the surface is an economic and simple way to change these 
physicochemical properties for creating favorable anti-adhesion charac-
teristics without any bulk properties changes. This passive strategy, as 
a bacteriostatic approach, depends on specific surface chemistry and/or 
topography [30, 31]. 

3.1. Passive Polymer Coating 

The biopassive polymer coating provides minimal adsorption of pro-
teins on the implant surface and therefore hindering bacterial adhesion. 
A broad range of polymers comprising poly(ethylene glycol) (PEG), 
Poly(2-oxazoline)s (POxs), and Poly-zwitterionic polymers have been 
subjected to many investigations as the biopassive surfaces [32-34].

PEG and its derivatives are the desirable candidates to create anti-

Fig. 1. Schematic of stages of biofilm formation.
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fouling interfaces, resisting non-specific protein adsorption as well as 
cell and bacterial adhesion. They have been considered as the “gold 
standard” of antifouling polymers [35]. Polymer brushes and self-as-
sembled monolayers (SAMs) are the common forms of these coatings. 
Polymer brushes provide greater chemical and mechanical robustness 
over SAMs, leading to greater long-term stability [36]. 

Physisorption and covalent attachment are used to make polymer 
brushes [37]. Kingshott et al. [38] reported a bacterial adhesion reduc-
tion in covalently bonded PEG coatings leastwise two orders magnitude 
greater than PEG layer physisorbed to the substrate, because of its high 
coverage and stability. “Graft-to” and “graft-from” are the commonly 
used approaches to accomplish covalent attachment (Fig. 2). The Graft-
to approach is directly grafting of pliable, hydrophilic end-functional-
ized polymers to a surface. These coatings require high graft densities to 
be effective. Because of the steric obstacles of the adjacent chains, this 
is not easy to attain with the “graft-to” approach. In “graft-from”, an 
in-situ surface-initiated polymerization [e.g., atom transfer radical po-
lymerization (ATRP) and reversible addition-fragmentation chain trans-
fer (RAFT)] forms pliable, hydrophilic polymer chains. This approach 
provides improved graft density thereby resistance against proteins [39].

A biologically inspired approach to PEG attachment to different sub-
strates has been also developed by using muscle adhesive protein compo-
nents i.e., 3,4-dihydroxyphenylalanine (DOPA) via catechol group [40]. 
In this regard, Dalsin et al. [41] reported that end-functionalized (pep-
tides containing three DOPA residues) monomethoxy-terminated PEG 
(mPEG-DOPA) attached to the titanium oxide (TiO2) surface has a high 
ability to resist proteins upon exposure to human serum. A charge-trans-
fer complex among Ti-OH and DOPA groups is reported to form, tether-
ing the polymer onto the surface of TiO2. Also, PEG side chains can be 
introduced into the polycationic backbone (i.e. poly(L-lysine) (PLL)) to 
anchor PEG to the surfaces of metal oxides via amine groups, forming 
comb-like copolymers (PLL-g-PEG) [42]. In addition, functionalization 
of the lysine side chain with Arg-Asp-Gly (RGD) integrin ligand can 
be done to give the specific binding ability of the surface to the host 
cells [43]. To enhance the stability of physisorbed PLL-g-PEG coatings, 
functionalization of a fraction of the amine-terminated side chains of 
the lysine can be done with catechol groups. In this regard, Saxer et 
al. [44] grafted a catechol derivative, 3,4-dihydroxyphenylacetic acid 
(DHPAA), with different fractions to the PLL backbone, forming PLL-
g-(DHPAA; PEG) copolymers and examined polymeric layer chemical 

stability upon exposure to high ionic salt solutions. Unlike the control 
PLL-g-PEG copolymer, PLL-g-(DHPAA; PEG) remained non-fouling 
due to stable catechol-substrate anchorage. 

It is worthy to note that the high mobility of PEG chains, steric hin-
drance, and great exclusion volume effect of the highly hydrated layer 
make it non-fouling [37]. However, several variables including chain 
length, grafting density, and kind of branching architecture determine 
the effectiveness of PEG [45, 46].

Even though PEG is frequently used to provide protein-resistant sur-
faces, it is exposed to oxidative breakdown and chain cleavage, leading 
to loss of surface hydrophilicity, and resistance against non-specific ad-
sorption that restrict its long-term usage [47]. 

Poly(2-oxazoline)s (POxs) including poly(2-ethyl-2-oxazoline) and 
poly(2-methyl-2-oxazoline) are considered as the prominent  alterna-
tives to PEG [48]. They offer extended period antifouling character and 
less oxidative degradation in oxidative and biological media, relative 
to PEG. As a consequence, they have gained considerable attention as 
the non-fouling surface coatings [49]. POxs with the optimized grafting 
density have close protein repellency to PEG and different techniques 
are used to anchor them to the surface including “graft-from,” “graft-to,” 
and PLL-g-POx copolymers [48]. 

Further, Zwitterionic polymers have recently become promising 
PEG alternatives. They are a subset of materials with equal anions and 
cations alongside their polymer chains. These polymers comprise neg-
ative and positive charged groups embedded into their structure, which 
make them greatly hydrophilic non-fouling compounds. based on an-
ions, zwitterionic polymers can be categorized into phosphorylcholine 
(PC), sulfobetaine (SB), and carboxy betaine (CB) [24]. Similar to PEG, 
their antifouling properties are firmly correlated with the hydrated layer 
formed on these polymers, acting as the physical obstacle for proteins 
and bacteria adhesion. zwitterionic polymers show extremely low ad-
sorption of proteins, because of their net charge neutrality. Further, the 
hydrophilicity of these polymers is more than PEG owning to an intense 
interaction with molecules of water through ionic solvation rather than 
hydrogen bonding utilized by PEG, enhancing antifouling properties of 
zwitterionic materials [50].

3.2. Surface Morphology Modification

Another approach to prevent the initial bacterial attachment is to uti-
lize superhydrophobic surfaces with a contact angle > 150° and roll-off 
angle <10° (the minimum surface inclining angle at which droplets of 
liquids start rolling off) for water. These are at odds with superhydro-
philic surfaces, displaying low contact angles typically <10°. Because of 
their low surface energies which decrease contaminants and water adhe-
sion and thereby make them simple to clean, superhydrophobic surfaces 
have been subjected to investigations for antifouling properties [51].

The basic rule to make superhydrophobic surfaces is creating rough-
ness over a surface through different techniques including template 
deposition, solution immersion, electrodeposition, spray coating, chem-
ical etching, etc. followed by functionalization via material with low 
surface energy [52]. 

Non-wettability of the superhydrophobic surfaces is the basic prin-
ciple behind their usage for bacterial biofilm reduction which does not 
favor the attachment of planktonic bacteria [51, 53, 54]. For superhydro-
phobic surfaces, synergistic actions of surface energy and roughness im-
prove the property of the surface. Minimal contact between the implant 
surface and the bacteria is feasible to attain with efficient roughness. 
Alongside such benefits, the cells of bacteria respond to the topography 
of the surface (particularly with micron-sized roughness) which changes 
their morphology leading to strong attachment over the surface [55]. 
The surface energy significance of the substrate has been pointed out, 
influencing the adhesion dynamics of the bacteria i.e., lower surface en-

Fig. 2. Schematic of polymer grafting through (a) the ‘graft-to’ approach, 
in which the reaction between functional groups (F, F’) leads to the surface 

immobilizing of pre-formed polymers, (b) the ‘graft-from’ approach in which 
graft polymers are covalently immobilized by utilizing chain transfer agents or 

surface-immobilized initiators in a monomer solution.
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ergy leads to the reduction in bacterial adhesion [56]. Hence, besides 
roughness, the low energy of the surface has equal importance. In oth-
er words, appropriate roughness and low energy of the surface lead to 
the contact area reduction and the adhesion restriction, respectively. In 
this regard, Tang et al. [57] carried out titanium substrate modification 
with TiO2 nanotubes and subsequent functionalization with 1H, 1H, 2H, 
2H-perfluorooctyl-triethoxysilane (TiS) to obtain a superhydrophobic 
surface. Super-hydrophobicity was observed to effectively decrease 
the adhesion of the bacteria over titanium surface with nanotube and 
titanium surface-functionalized with TiS. Moazzam et al. [58] modified 
an aluminum surface with micro/nanostructure and silanized to achieve 
super-hydrophobicity, which not only could provide an ability to con-
trol bacterial adhesion, protein adsorption, and biocompatibility but also 
could obviate the issue of Al-alloys long-term toxicity [59]. 

4. Bactericidal Surfaces

Even though the adhesion of bacteria can be significantly reduced 
by micro-structuring or surface coating, it is not easy to entirely remove 
adhesion, and attachment of some bacteria may still occur to the implant 
surface. This can provide biofilm development on the surface of the im-
plant, which is troublous to treat. Hence, it is important to employ a 
second defense line dealing with bacteria that overcome the antifouling 
function of the surface treatment. Contact killing is an approach to elim-
inate adhered pathogens entirely. This kind of anti-infection approach is 
generally comprised of bactericidal agent immobilization on the implant 
surface, therefore making a functional surface with the bactericidal abil-
ity [60]. 

4.1. Active Polymer Coating

The cells of microbes commonly contain a net negative charge be-
cause of the presence of negatively charged phospholipids at the exte-
rior Gram-negative bacteria’s membrane and teichoic acid membrane 
protein in Gram-positive bacteria. Hence, cationic polymers can provide 
effective adsorption at the surface of the bacterial cell. such cationic 
polymers can simply penetrate through the membrane of the cell, as they 
are sufficiently amphiphilic. This leads to cell disruption, causing cyto-
plasmic constituent leakage, which eventually induces the death of the 
cell. Therefore, cationic polymers have been employed to design greatly 
vigorous antimicrobial surfaces, which can offer the killing of bacteria 
just via contact. The suppositions of these polymers’ action in bacte-
ria-killing have been corroborated by many pieces of research using 
atomic force microscopy (AFM), two colors fluorescence assays, trans-

mission electron microscopy (TEM), monitoring the loss of constituents 
of the bacterial cell, and dye leakage from liposomes which imitate the 
membrane of bacterial cell [61]. Cationic polymers most likely damage 
the wall of the cell membrane via lysis, inducing the dissemination of 
cellular constituents in the solution. The antimicrobial efficacy of the 
cationic polymers is directly commensurate with the number of cationic 
groups, constitutive alkyl chain length, and hydrophobicity [62]. Cat-
ionic polymers with antimicrobial functions are summarized in Table 1.

4.2. Antimicrobial Peptides

Antimicrobial peptides (AMPs), immune effector molecules of 
plants, animals, and microorganisms, have gained considerable attention 
as the agents solving the problems related to IAI. In other words, they 
present antimicrobial activity against antibiotic-resistant bacteria which 
reside within the biofilms [72]. AMPs are mainly cationic, amphipathic 
peptides, displaying antimicrobial activity against fungi, bacteria, and 
(enveloped) viruses. Interaction of AMPs with the specific component 
of the cell envelope of the bacteria results in destabilization, disruption, 
and/or depolarization of the plasma membrane of the bacteria, causing 
to death of bacterial cells within minutes [73]. In this regard, Kazemza-
deh-Narbat et al. [74] coated the titanium surface with calcium phos-
phate loaded with Tet213 (KRWWKWWRRC), a cationic antimicrobial 
peptide, (CaP-AMP). They reported the ability of CaP-AMP coating to 
kill both P. aeruginosa and S. aureus bacteria within 30 min in-vitro. A 
parotid secretory protein-derived AMP, called GL13K, has been demon-
strated to have both bacteriostatic and bactericidal capacity [30]. GL13K 
peptide coating is bactericidal in-vitro, inhibiting the growth of biofilm 
for peri-implantitis’ pathogens, for instance, P. aeruginosa, P. gingivalis, 
and Strep. gordonii under static growth conditions [75, 76]. In addition, 
antimicrobial activity of AMP surfaces has been reported against E. coli 
and S. epidermidis under static growth conditions [77] and Strep. gor-
donii under dynamic growth conditions [78]. A summary on AMPs are 
presented in Table 2. 

Because of the non-specific and rapid action mechanisms, the risk of 
development of resistance is typically considered to be low. However, 
the resistance of bacteria to AMPs can happen and several resistance 
mechanisms have been reported which include envelope structure alter-
ations of cell and membrane envelope enhancing positive charge, efflux 
pumps upregulation, and peptide proteolytic degradation [88]. For ex-
ample, it has been reported that resistance to the human cathelicidin LL-
37 includes the peptide degradation via bacterial proteolytic enzymes, 
efflux pumps upregulation, and also down-regulation of LL-37 induced 
by bacteria [89]. In low concentrations of magnesium or calcium ions, 
like in blood plasma, the activation of pmr (polymyxin resistance) op-

Table 1.
Cationic polymers with antimicrobial function.

Polymer Action Mechanism Affected Bacteria Ref

Quaternary Ammonium Com-
pounds (QAC)

denaturing structural enzymes and proteins through the electrostatic inter-
action between the negatively charged membrane of bacteria and positively 

charged QAC and afterward hydrophobic QAC tail integration into the 
hydrophobic membrane core of bacteria. 

MRSA [63, 64]

Chitosan
pH-dependent antimicrobial activity. hydrophobic interaction and chelation 
effects at pH>pKa and electrostatic interaction between the cell wall of bac-

teria and protonated amino groups at pH< pKa results in antibacterial activity. 
E.coli, S. aureus [65-67]

Poly- ε -lysine
Destruction of the bacterial membrane structure and acceleration of the 

death of bacteria through surface potential interference and oxidative stress 
induction.

E. coli, MRSA [68, 69]

N -halamines
cell inactivation or cell inhibition through targeting amino or thiol groups of 

proteins by oxidative halogen (Br+ or Cl+), upon direct contact.
E. coli, S. aureus [61, 70]

Polyethylenimine (Branched)
Rupture of bacterial cell membrane via electrostatic interaction between the 
negatively charged membrane of bacteria and positively charged polyeth-

yleneimine
P. aeruginosa, MRSA [67, 71]
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eron occurs by P. aeruginosa, medicating N-arabinose addition to its 
lipopolysaccharide. This makes the exterior bacterial cell’s surface more 
positively charged, and consequently repels the cationic AMPs [89]. 
Therefore, bacterial resistance to AMPs is feasible for several species 
of bacteria, but it has not been examined such resistance development to 
novel synthetic AMPs. 

AMPs show not only direct antimicrobial activity but also immu-
nomodulatory activities. For instance, they can hinder the excessive 
pro-inflammatory responses resulting from endotoxins of bacteria such 
as lipoteichoic acid and lipoteichoic acid of Gram-positive bacteria and 
lipopolysaccharide of Gram-negative bacteria [90]. 

Wound healing, osteogenic, and angiogenesis activity are the oth-
er desired characteristics of AMPs. In-vivo study of trabecular bone 
growth has found osteoconductive properties of cylindrical Ti implants 
coated with HHC36, an antimicrobial peptide [82]. Similarly, pro-osteo-
genic and anti-biofilm activities have been displayed by fusion peptide 
P15-CSP [91]. Further, in NOD/SCID mice, acceleration of bone repair 
and rat calvarial bone defect model, promotion of bone regeneration has 
been provided by LL-37 [92, 93]. However, high manufacturing cost, 
uncontrolled toxicity, degradation via the host proteases, and cytotoxic 
effects on eukaryotic cells have limited practical applications of AMPs 
[94].

4.3. Metallic Nanoparticles

The coatings and/or surfaces incorporated with metallic nanoparti-
cles (mNPs), as the modern generation of surface modification, have 
been subjected to extensive in-vitro and in-vivo preclinical studies [95, 
96]. Functionalization of surfaces via loading or charging with some 
type of compounds or mNPs offers numerous benefits over common 
surfaces. These systems have shown desired outcomes, including inhibi-
tion of bacterial adhesion and biofilm formation, betterment of adhesion 
and osteogenic expression, and even anti-inflammatory efficacy [97]. 
Many pieces of research have focused on the antibacterial application of 
mNPs, generated from silver, gold, copper, zinc, and some other metals 
[95, 98, 99].

In general, the action of the antibiotics involves the inhibition of sur-
vival factors, or evolution of the bacterial cell, which favor acquired re-
sistance mechanisms with effect reduction over time. It should be noted 
that resistance development against metals is more intricate for the cells 
of bacteria. They also have antibacterial ability against a wide spectrum 
of gram-negative and gram-positive bacteria. As result, the usage of 
systems releasing mNPs is in high demand on the systemic antibiotics 
reduction for topical surgery [100]. 

The antibacterial mechanisms of mNPs might differ depending on 
their type [24]. The accepted mechanisms to damage the cells of the 
bacteria include oxidative stress via reactive oxygen species (ROS) gen-
eration, free metal ions release which acts through the intra- and ex-
tra-cellular pathways, and disruption of the membrane via their physical 
structures (Fig. 3) [97]. 

covalently immobilization or coating of mNPs onto the implant sur-
face provides antibacterial functioning to the surface [24]. For example, 
Gao et al. [101] employed TiAg magnetron sputtering and anodization 
to prepare Ag2O nanoparticle embedded TiO2  nanotube (NT) arrays. 
They reported the ability of NT-Ag2O arrays to kill S. aureus and E. coil 
even after 28 days immersion, showing long-term antibacterial capacity. 
Similarly, Hengel et al. [102] used plasma electrochemical oxidation 
to fabricate zinc and silver nanoparticles embedded TiO2 layer on the 
porous titanium implant surface. Releasing of zinc and silver ions was 
reported for up to 28 days, showing well bactericidal activity to methi-
cillin-resistant S. aureus (MRSA). Further, producing ROS by bio-func-
tionalized implants facilitated the ability of bacterial contact killing. In 
addition, their loading into the hydrogel and subsequently coating onto 
the implant surface offer an antibacterial action. In this regard, Xu et 
al. [103] loaded Ag NPs into poly(hydroxyethyl methacrylate) hydrogel 
with interconnected, spherical pores. good antibacterial properties were 
shown against both Gram-negative bacteria (E. coli) and Gram-positive 

Fig. 3. Schematic of antibacterial mechanisms of mNPs. Fig. 4. Schematic of Vancomycin covalently linked to the polymer surface.

Table 2.
Overview of AMP associated coatings

AMP Coating system Substrate Affected 
Bacteria

Ref

HHC-36
TiO2 nanotubes Ti S. aureus [79]

TiO2 nanotubes, 
CaP, POPC

Ti S. aureus, P. 
aeruginosa

[80]

Tet-213

poly(DMA-co-AP-
MA) brush

Ti P. aerugi-
nosa

[81]

CaP Ti S. aureus, P. 
aeruginosa

[82]

Tet-213, Tet-20, 
Tet-21, Tet-26, 
010cys, HH2, 

MXX226

PDMA brush Ti S. aureus, P. 
aeruginosa

[83]

LL-37 - Ti P. aerugi-
nosa

[84]

PSI-10 HA AZ91 S. aureus [85]

Nisin - Stainless 
steel

E. coli, 
Bacillus 
subtilis

[86]

magainin I - Stainless 
steel

Listeria 
ivanovii

[87]
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bacteria (S. aureus) in-vitro. It was also greatly effective at bacterial cell 
growth inhibition. The main mNPs used in the bactericidal system for 
implants are presented in Table 3.

Interaction between nanomaterials and biological systems is signifi-
cantly affected by their surface charge, shape, aggregation status, and 
size. The great importance of these parameters has been reported for na-
no-silver (nAg) to its antibacterial activity. A higher surface-to-volume 
ratio is possessed by nAg with the smaller size, which facilitates Ag ion 
release by providing more Ag atoms exposed to the biological solution. 
Further, entrance to bacteria can be simplified by small nAg, and ROS 
generation can be promoted because of its high surface energy, which 
causes stronger oxidative stress in the cells of bacteria [104]. however, 
greater cytotoxicity against host cells has been shown by the smaller 
ones. [24].

4.4. Ion Implantation

Because of broad-spectrum bactericidal activity of elemental ions 
such as chlorine (Cl), calcium (Ca), fluorine (F), iodine (I), zinc (Zn), 
selenium (Se) cerium (Ce), and copper (Cu) against both Gram-nega-
tive and Gram-positive bacteria, they are mostly considered to fabricate 
the antibacterial coatings. The ions’ bactericidal activity is dependent on 
their gradual release from the implant surface into the surrounding host 
tissue. hydroxylation into greatly reactive species including hydrogen 
peroxide (H2O2), hydrochloric acid (HCl), superoxide (O2−), hypochlor-
ous acid (HOCl) is one of the bactericidal mechanisms of implanted 
ions, which leads to bacterial cell membranes oxidation, causing en-
hanced cell permeability and eventually death of the cells. They can also 
cause to prevent bacterial metabolism [116, 117].

In the field of orthopedic implants, stimulating bone integration and 
bacterial infection prevention can be simultaneously achieved by the in-
corporation of antibacterial metallic ions into bioactive materials such 
as hydroxyapatite (HA). In this regard, several antibacterial HA coatings 
including Cu-carbonated HA [118, 119], Ag-HA [120], Ag/Sr-HA [121], 

Cu/Zn-HA [118], Sr/Cu-HA [122], have been developed. For instance, 
Hidalgo-Robatto et al. [123] produced HA coatings doped with Zn and 
Cu on the implant surfaces via pulsed laser deposition (PLD) for simul-
taneous osseointegration promotion and biofilm formation inhabitation. 
doping of Zn and Cu provided antibacterial features to the coatings, 
leading to a notable reduction in S. aureus and E. coli biofilms [124]. 

4.5.  Antibiotic-Loaded Coatings

Infections have been often treated with antibiotics. However, as 
described above, the unsuitable usage of antibiotics has resulted in 
the development of many kinds of antibiotic-resistant bacteria, mainly 
MRSA. Recently, multiantibiotic-resistant superbugs have also devel-
oped, which bring high challenges for controlling clinical implant infec-
tion. Contrary to the conventional infection management via systemic 
antibiotics, the effective concentration of antibiotics can be achieved 
by antibiotic-loaded coatings, providing local drug delivery. The risk 
of antibiotic resistance can be also decreased by the local antibiotic ap-
plication. Mixing and co-deposition the antibiotic molecules with the 
polymer matrix is the conventional manner to make the antibiotic-load-
ed coatings [125, 126]. 

A wide range of antibiotics including levofloxacin, gentamicin, 
vancomycin, etc. has been used to gain surface antibacterial properties 
(Table 4). In addition, phytochemicals such as ferulic acid and cur-
cumin are recent of interest, because they do not cause the resistance 
of bacteria over their synthetic counterparts [127, 128]. Further, they 
can combine with bioactive materials to increase the biological coating’s 
performance. This is caused by the synergistic interaction of the released 
bioactive ions and phytochemical compounds at the implant site [129]. 

However, controlled release of the antibiotics is difficult to be 
achieved by the conventional single-layer antibiotic-loaded coatings. In 
these systems, a large part of the loaded antibiotics is released after a very 
short period [125], since inter-molecular bonding between the compo-
nents of the coatings and the molecules of the antibiotics is weak [130]. 
This burst release provides the development of opportunistic pathogens 
by limitation of bactericidal time and serious tissue toxicity may be in-
duced by releasing the high antibiotic concentrations locally [131]. To 
obviate this problem, the chemical conjugation of small-molecule anti-

Table 3.
mNPs-containing composite coating used for IAI prevention.

mNP Coating System Substrate
Affected 
bacteria

Ref

Ag

CaP, TiO2 nanotubes Ti S. aureus [105]

polyacrylate-based 
hydrogel 

Ti
S.aureus, E. 

coli
P.aeruginosa 

[106]

CaP Ti-6Al-4V S. aureus [105]

poly(dl-lactic-co-glycol-
ic acid)

stainless steel 
alloy(SNPSA)

MRSA [107] 

ZnO

Chitosan/TiO2 layer Ti E. coli [108]

TiO2 nanotubes Ti S. aureus [109]

bioactive glass/alginate
316L stainless

steel
E. coli [110]

Cu

HA Ti
S. aureus, E. 

coli 
[98]

Poly(ethylene glycol 
diacrylate) hydrogel

316L stainless
steel

S. aureus, E. 
coli 

[111]

Chitosan
316L stainless

steel
S. aureus, E. 

coli
[112]

Au

TiO2 nanotubes Ti
S. aureus, E. 

coli 
[113]

Chitosan/bovine serum
albumin

Ti-6Al-4V
E. coli,
Bacillus 
subtilis

[114]

Chitosan NiTi S. aureus [115]

Table 4.
Bactericidal coatings containing antibiotic drugs.

Antibacterial 
Agent

Coating System Substrate
Affected 
bacteria

Ref

Vancomycin

calcium phosphate Ti S. aureus [137]

TiO2 nanotubes Ti S. aureus [138]

Chitosan/BG Ti MRSA [130]

- Ti alloy
S. epider-

midis
[139]

Gentamicin

 poly(d,l-lactide) 
(PDLLA)

Ti S. aureus [140]

TiO2 nanotubes Ti S. aureus [141]

Chitosan/gelatin/
silica NP 

316L 
stainless 

steel

S. aureus,
E. coli

[142]

levofloxacin Graphene Ti
S. aureus,

E. coli
[143]

Fusidic acid Chitosan/BG
316L 

stainless 
steel

S. aureus,
E. coli

[128]

Rifampicin Mg silicate Ti S. aureus [144]

Fusidic acid and 
Rifampicin

PLGA nanofibers
Ti

MRSA, 
S. epider-

midis
[145]
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biotics to the surface through linkage bonding can be used (Fig. 4) [132]. 
Antibiotic interruption into the delivery carrier, including mesoporous 
silica-based nanoparticles [133], halloysite nanotubes [134], magnetic 
nanoparticles [135], or titania nanotubes [136], and their co-deposition 
with the matrix of material is another approach, extending the duration 
of the antibiotic release.

5. Bacteriostatic-Bactericidal Bi-Functional Surface

  The  incorporation  of  the  antimicrobial  agent  into  an  antifouling
background has been provided the improvement of antibacterial proper-
ties of implant surfaces by the synergistic effect of active and passive ap-
proaches. For instance, Peyre et al. [146] reported both bactericidal and
protein-repellent surfaces can be achieved by the grafting of magainin I,
the antimicrobial peptide, to the surface of TiO2, through a PEG cross-
linker. Wang et al. [57] used in situ crystallization technique to coat the
Ti alloy surface with thin zeolite film under hydrothermal conditions. To
possess antibacterial properties, the Incorporation of a small amount of
Ag ions into the zeolite film was done via the ion-exchange process. The
antibacterial  studies  showed Ag-incorporated  zeolite  coatings  signifi-
cantly inhibit the proliferation of bacteria (MRSA) both on the Ti surface
and in the medium of the culture surrounding the Ti material. Further,
the additional antifouling feature was provided by the superhydrophilic
character of zeolite coating. 
  To use bi-functional surfaces it must be ensured that biopassive back-
ground does not prevent contact between the bacteria and antimicrobial
agents. In addition, polymers’ biopassive properties can be reduced by
antimicrobial agent incorporation. Switchable antibacterial surface ad-
vancement is one of the exciting solutions to overcome this issue [147].
The  basic  of  these  surfaces  is  their  capability  in  function  switching,
consequently being considered within a multi-function approach. This
can  promote  the  bacteria-releasing  and  bacteria-killing  ability  of  the
surface [24]. In this regard, Cheng et al. [148] created antifouling and
bactericidal switchable surfaces through the conversion of antimicrobial
cationic  poly(N,N-dimethyl-N-(ethoxycarbonylmethyl)-N-[20-(meth-
acryloyloxy)ethyl]  ammoniumbromide)  (pCBMA-1  C2)  to  non-foul-
ing zwitterionic pCBMA-1 by pH change. More than 99.9% of E. coli
was effectively killed by cationic pCBMA-1 C2 in 1h. Then, by the pH
change, the cells of dead bacteria (98%) were released after hydrolyzing
of cationic derivative to the zwitterionic polymer.

   
 

         

             

     
 

    
      

     

6. Candidates in Orthopedic Surgery

  Silver has been employed in the orthopedics field for over a decade.
MUTARS®  is one of the most versatile systems for bone replacement
which is available in a silver-coated version. In this system, a layer of
gold is applied and elementary silver is galvanically deposited onto the
implant  surface  [149].  However,  the  application  of  such  coatings  has
been  restricted  in  patients  with  high  postoperative  infection  risk  be-
cause of their toxicity issues. A lower profile risk can be provided by
low-content silver coating such as Agluna, in which Ag ions stitch into
the anodized titanium surface by ion-exchange reaction [150]. Another
candidate for antibacterial application in orthopedics is iodine-support-
ed implants, which have been numerously investigated in clinical trials.
Gradual leaching of iodine over time makes these coatings favorable for
long-term  applications  [151,  152].  Despite  desired  antibacterial
features  provided  by  surface  modifica-tion  approaches,  there  is  only
one randomized-controlled study that was  conducted  in  five  European
orthopedic  centers.  They  investigated  the  efficacy  of  antibiotic-
loaded  (ciprofloxacin,  vancomycin,  meropenem,gentamicin,
rifampicin,  and  daptomycin)  hydrogels  in  the  prevention  of  implant
infection over control implants and reported a significant reduc-tion in

 
 

8. Conclusion

  The usage of orthopedic implants is in high demand for prosperous
treatment of musculoskeletal problems. Nevertheless, infection is one of
the main challenges over the success of implantation procedure, result-
ing from bacterial adhesion to the implant surface and presenting inev-
itable clinical, social and economic burden. Hence, many efforts have
been  made  to  fabricate  the  implants  with  antibacterial  property.  The
ideal approach is to modify the implant surface via altering the surface
chemistry or topography which has been highlighted in this review. This
approach has been divided into bacteriostatic and bactericidal surfaces,
depending  on  their  functional  principle  against  bacteria, which  is
summarized  in  Table  6.  The  combination  of  these  strategies  can
improve  the  antibacterial  properties  of  implant  surfaces  by  their
synergistic effect.

  
      

           

         

        
   

 

 

 
    

    

 infection by this system [153]. This  is  indubitably  insufficient  to  
develop  such  approaches  for practical applications and more 
clinical  evidence is needed.

7. New Approaches and Future Perspective

  Since none of these antibacterial coatings and surface modification
techniques  can  completely  meet  clinical  requirements,  multifunction-
al  and  smart  coatings  are  in  great  notice. There  is  no  distinct  formu-
la for these coatings, and these coatings are mainly designed based on
our  requirements.  One  model  of  multifunctional  coatings  is  based  on
three parts: 1) An anti-adhesive coating to inhibit bacterial adhesion, 2)
A bactericidal coating to kill adhered bacteria, and 3) RGD sequences
to enhance cell adhesion and osseointegration [154]. Table 5 provides
some  recent  developments  in  multifunctional  and  smart  coatings  and
their  result.  Today  nanocontainers  conjoined  to  sensors  are  in
development.  The  sensor  can  recognize  a  small  number  of  bacteria.
After  recognition,  sig-nals  are  sent  to  nanocontainers.  The  shell  of
nanocontainers  is  made  of  stimuli-responsive  materials  that  respond

  to signals coming from sen-sors and start to release biomolecules and
therapeutic  agents  entrapped  in  them.  Multifunctional  coatings  can
also  enhance  the  physical,  chem-ical,  and  mechanical  properties  of
implants  [161]. These  coatings  are  more operational than any single
method, hence the future of antibacte-rial coatings is in this path.

Table 5.

 Recent developments in multifunctional and smart coatings

recent developments in multifunctional and smart coatings.Substrates Biofunctional 
Elements

Observations Ref

Ti PEG + RGD Reduced S. aureus adhesion; Cell 
adhesion not studied

[42]

Ti6Al4V-  
dopamine

Dextran + 
BMP-2

Less S. aureus and S. epidermidis; 
increased osteoblast response

[155]

Ti-dopamine CM-CH + 
VEGF

Reduced S. aureus adhesion; 
increased osteoblast response

[156]

Ti6Al4V-do-
pamine

CM-CH + 
BMP-2

Reduced S. aureus and S. 
epidermidis adhesion; increased  

osteoblast  and mesenchymal 
stem cell response

[157]

Ti TNT + Ag2O 
NPs

Reduced S. aureus and E. coli; 
osteoblast-like response not influ-

enced compared to TNTs

[158]

Ti BMP-2 + 
vancomycin

Reduced S. epidermidis growth; 
increased  bone marrow stromal 

cell response

[159]

Ti EGF + 
magainin II

Reduced S. aureus and E. coli 
adhesion; increased fibroblast 

adhesion

[160]
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