

Available online at www.jourcc.comJournal homepage: www.JOURCC.com

Journal of Composites and Compounds

Surface modification of metallic orthopedic implants for anti-pathogenic characteristics

Varinder Pal Singh Sidhu ^a, Juliana Marchi ^b, Roger Borges ^b, Elahe Ahmadi ^{c*}

^a Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario, Canada

^b Center of Natural Science and Humanities, Federal University of ABC, Brazil

^c Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran

ABSTRACT

Bacterial infection is one of the main reasons for the long-term failure of orthopedic implants. Despite remarkable progression in antimicrobial drugs, implant-associated infection (IAI) remains difficult to treat, which is resulted from bacterial resistance against antibiotics. As a result, there is an urgent need to develop alternative approaches. The present review highlights surface modification of the orthopedic implants as a promising approach to inhibit bacterial infection. This approach can be classified into two groups: (1) bacteriostatic (anti-adhesive), and (2) bactericidal (contact-killing/release-killing) surfaces. Their combination, which is considered as bacteriostatic-bactericidal bi-functional surface, can provide a more robust approach against dangerous pathogenic species. New approaches and future perspectives in this inspiring field are also provided.

©2022 JCC Research Group.

Peer review under responsibility of JCC Research Group

ARTICLE INFORMATION

Article history:

Received 29 December 2021

Received in revised form 7 February 2022

Accepted 20 March 2022

Keywords:

Metallic implants

Anti-pathogenic

Surface coating

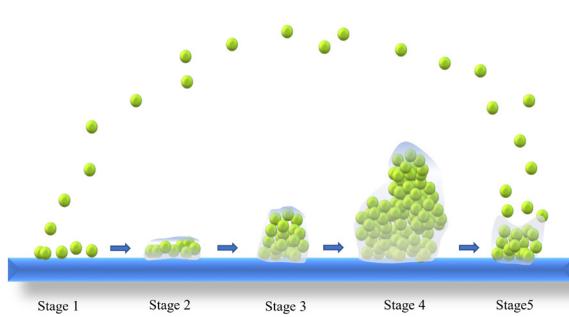
Surface modification

Table of contents

1. Introduction	47
2. Biofilm Formation	48
3. Bacteriostatic Surfaces	48
3.1. Passive Polymer Coating	48
3.2. Surface Morphology Modification	49
4. Bactericidal Surfaces	50
4.1. Active Polymer Coating	50
4.2. Antimicrobial Peptides	50
4.3. Metallic Nanoparticles	51
4.4. Ion Implantation	52
4.5. Antibiotic-Loaded Coatings	52
5. Bacteriostatic-Bactericidal Bi-Functional Surface	53
6. Candidates in Orthopedic Surgery	53
7. New Approaches and Future Perspective	53
8. Conclusion	53

1. Introduction

Because of the annual population growth, aging population increment, and high functional demands of younger people, requisition for effective and safe materials is significantly increasing [1]. Such materials are commonly used as replacement implants in the knees, hips, ears, and elbows in the human body. Steep growth in respect to knee arthroplastics and hip replacements is reported which is estimated to rise by 673%


and 174% up to 2030. In addition, inflammation and trauma in the joint of bones (osteoarthritis), and bones weakening (Osteoporosis) are other factors implicated in the increment of implant surgery [2].

Metallic biomaterials are extensively utilized for manufacturing surgical implants. Titanium and its alloys, 316L stainless steel (316L SS), and cobalt-based (Co-Cr) alloys are the most used metallic biomaterials. In addition, shape memory alloys e.g., magnesium (Mg), NiTi, and tantalum (Ta) are also developing as miscellaneous material implants [3],

* Corresponding author: Elahe Ahmadi; E-mail: elaheahmadi71@gmail.com

<https://doi.org/10.52547/jcc.4.1.6>

This is an open access article under the CC BY license (<https://creativecommons.org/licenses/by/4.0/>)

Fig. 1. Schematic of stages of biofilm formation.

4]. Appropriate combinations of acceptable biocompatibility and well mechanical properties including hardness, strength, modulus, plasticity, fatigue life, toughness, etc. make them suitable for long-term implant efficiency in main load-bearing conditions for example in some dental and orthopedic implant applications. These features along with the relative facility of production using well-known and widely accessible methods such as machining, casting, and forging, and also additive manufacturing techniques by sintering or selected laser melting lead to promoting and attention of metal used in the dentistry such as dental implants, restorations, and orthodontic wires and orthopedics such as pins, screws, and plates for artificial joints, artificial spines, fixations, etc. [5, 6].

However, because of IAI, the success of long-term implants could be challenging. It is one of the most prevalent reasons for orthopedic implants failure with catastrophic subsequences for patients including long-term hospitalization, functional incapacitation, revision surgeries, prolonged antibiotic therapy, and even mortality [7, 8]. Adhesion of microorganisms into the surface of implants represents an initial infection step, subsequently causing biofilm formation [9]. Well-known pathogen strains involved in infections are Gram-positive bacteria including *S. (Staphylococcus) epidermidis*, *S. (Staphylococcus) aureus*, *S. (Streptococcus) viridans*, *E. (Enterococcus) faecalis*, and Gram-negative bacteria including *P. (Pseudomonas) aeruginosa*, *E. (Escherichia) coli*, *P. (Proteus) mirabilis*, *K. (Klebsiella) pneumonia*, and yeasts (*Candida* species) [10], among which *P. aeruginosa* and *S. aureus* are accountable of the remarkable number of biofilm-related infections [11]. These infecting organisms are introduced into the implant surface by its contamination during surgery, or the post-operative stage, and or by hematogenous bacteria spreading from presenting infections somewhere else in the host system [12].

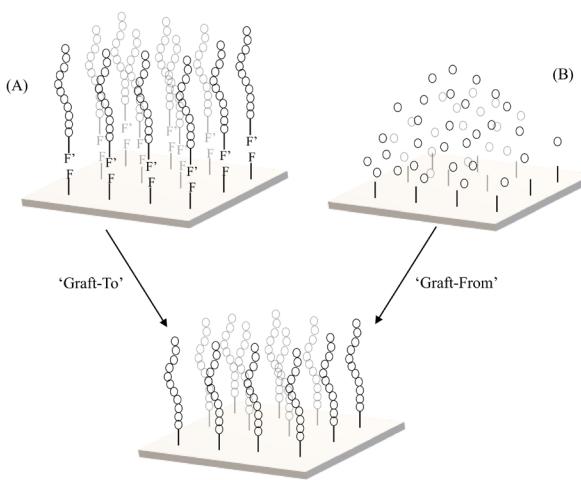
Biofilm, as an organized microorganism aggregate within a self-produced extracellular polymeric substance (EPS), attach irreversibly to living or fetal surface [13, 14]. 5-35% volume of biofilm is microorganisms while the remaining volume is constituted by EPS [15]. There are different component types in EPS including protein (>2%), polysaccharides (1-2%), RNA (<1%), DNA molecules (<1%), ions (free and bound), and water (97%) [16]. Bacterial strains become resistant to multiple drugs through this barrier, which prevents them from penetrating immune system cells of the host and antibiotics. Furthermore, reacting antibiotics or biocides with constituents of the biofilm, makes them neutralizing [17, 18]. In other words, biofilms cause to resist phagocytosis, antibiotics, disinfectants, and other ingredients of the innate-adaptive immune system of the host [19].

The concept of surface modification has gained widespread attention over the past few decades on account of their potential to durability extension of engineering and medical devices against destructive factors including wear, corrosion, infection, etc. without any changes in bulk

properties [20-22]. Up to date, different modification strategies are being employed to fabricate antibacterial surfaces, which can prevent the colonization of bacteria and implant infection. Based on their functional principle, the antibacterial surfaces can be divided into two main groups: bacteriostatic (passive) and bactericidal (active), which are the subject of the present review [23]. Relying on their intrinsic repulsion property against bacteria, bacteriostatic surfaces are able to prevent or reduce the microorganisms attachment. This can be achieved by altering the surface chemistry (the passive polymer coatings) and topography (superhydrophobic surfaces). Bactericidal coatings can disrupt bacterial membrane integrity by physical interaction through cationic compounds like polymers (contact-killing) or by leaching inorganic or organic compounds from the substrate (release-killing) including antimicrobial peptides, metallic nanoparticles, elemental ions, and antibiotics. The bacteria-free surface can be maintained by such an approach without needing antibiotic therapy and any harmful chemicals [24].

2. Biofilm Formation

irreversible bacterial adhesion threatens the long-term antibacterial surface application, causing biofilms. The formation of biofilms on the surface of biomaterials, as a developmental process, comprises five main stages (Fig. 1): (1) initially reversible bacterial cell attachment to the implant surface, (2) irreversible adhesion, (3) aggregation and cumulation of cells in multiple layers, (4) maturation and differentiation of biofilm, and (5) cell detachment to new cycle initiation of biofilm formation somewhere else [25]. Once implanted, a layer called conditioning film which is mainly composed of proteins covers the surface of the biomaterial. This supports interactions between bacteria and the surface [26]. At first, weak attraction forces e.g., electrostatic, Lifshitz Van der Waals, hydrophobic forces mediate the surface protein-bacteria interactions and subsequently specific chemical interactions including adhesive proteins of bacteria and production of EPS strengthen bacteria adhesion to the surface [27, 28]. After that, bacteria cell duplication and division lead to the formation of micro-colonies, as the basic organized biofilm unit. Then, biofilm is matured by bacteria accumulation and intercellular adhesion in multiple bacterial layers. Finally, because of nutrient depletion, the detachment of microorganisms from the biofilm occurs, entering into the bloodstream and spreading infections [29].


3. Bacteriostatic Surfaces

Characteristics of implants surface such as surface energy, surface roughness and chemistry, surface potential, conductivity, and hydrophilicity play an incisive role in the initial adhesion of bacteria to implants and thereby the formation of biofilm. These characteristics can affect the conformation and/ or amount of adsorbed proteins, therefore, affecting subsequent bacterial adhesion and biofilm formation. Modification of the surface is an economic and simple way to change these physicochemical properties for creating favorable anti-adhesion characteristics without any bulk properties changes. This passive strategy, as a bacteriostatic approach, depends on specific surface chemistry and/or topography [30, 31].

3.1. Passive Polymer Coating

The biopassive polymer coating provides minimal adsorption of proteins on the implant surface and therefore hindering bacterial adhesion. A broad range of polymers comprising poly(ethylene glycol) (PEG), Poly(2-oxazoline)s (POxs), and Poly-zwitterionic polymers have been subjected to many investigations as the biopassive surfaces [32-34].

PEG and its derivatives are the desirable candidates to create anti-

Fig. 2. Schematic of polymer grafting through (a) the ‘graft-to’ approach, in which the reaction between functional groups (F, F') leads to the surface immobilizing of pre-formed polymers, (b) the ‘graft-from’ approach in which graft polymers are covalently immobilized by utilizing chain transfer agents or surface-immobilized initiators in a monomer solution.

fouling interfaces, resisting non-specific protein adsorption as well as cell and bacterial adhesion. They have been considered as the “gold standard” of antifouling polymers [35]. Polymer brushes and self-assembled monolayers (SAMs) are the common forms of these coatings. Polymer brushes provide greater chemical and mechanical robustness over SAMs, leading to greater long-term stability [36].

Physisorption and covalent attachment are used to make polymer brushes [37]. Kingshott et al. [38] reported a bacterial adhesion reduction in covalently bonded PEG coatings leastwise two orders magnitude greater than PEG layer physisorbed to the substrate, because of its high coverage and stability. “Graft-to” and “graft-from” are the commonly used approaches to accomplish covalent attachment (Fig. 2). The Graft-to approach is directly grafting of pliable, hydrophilic end-functionalized polymers to a surface. These coatings require high graft densities to be effective. Because of the steric obstacles of the adjacent chains, this is not easy to attain with the “graft-to” approach. In “graft-from”, an in-situ surface-initiated polymerization [e.g., atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT)] forms pliable, hydrophilic polymer chains. This approach provides improved graft density thereby resistance against proteins [39].

A biologically inspired approach to PEG attachment to different substrates has been also developed by using muscle adhesive protein components i.e., 3,4-dihydroxyphenylalanine (DOPA) via catechol group [40]. In this regard, Dalsin et al. [41] reported that end-functionalized (peptides containing three DOPA residues) monomethoxy-terminated PEG (mPEG-DOPA) attached to the titanium oxide (TiO_2) surface has a high ability to resist proteins upon exposure to human serum. A charge-transfer complex among Ti-OH and DOPA groups is reported to form, tethering the polymer onto the surface of TiO_2 . Also, PEG side chains can be introduced into the polycationic backbone (i.e. poly(L-lysine) (PLL)) to anchor PEG to the surfaces of metal oxides via amine groups, forming comb-like copolymers (PLL-g-PEG) [42]. In addition, functionalization of the lysine side chain with Arg-Asp-Gly (RGD) integrin ligand can be done to give the specific binding ability of the surface to the host cells [43]. To enhance the stability of physisorbed PLL-g-PEG coatings, functionalization of a fraction of the amine-terminated side chains of the lysine can be done with catechol groups. In this regard, Saxer et al. [44] grafted a catechol derivative, 3,4-dihydroxyphenylacetic acid (DHPAA), with different fractions to the PLL backbone, forming PLL-g-(DHPAA; PEG) copolymers and examined polymeric layer chemical

stability upon exposure to high ionic salt solutions. Unlike the control PLL-g-PEG copolymer, PLL-g-(DHPAA; PEG) remained non-fouling due to stable catechol-substrate anchorage.

It is worthy to note that the high mobility of PEG chains, steric hindrance, and great exclusion volume effect of the highly hydrated layer make it non-fouling [37]. However, several variables including chain length, grafting density, and kind of branching architecture determine the effectiveness of PEG [45, 46].

Even though PEG is frequently used to provide protein-resistant surfaces, it is exposed to oxidative breakdown and chain cleavage, leading to loss of surface hydrophilicity, and resistance against non-specific adsorption that restrict its long-term usage [47].

Poly(2-oxazoline)s (POxs) including poly(2-ethyl-2-oxazoline) and poly(2-methyl-2-oxazoline) are considered as the prominent alternatives to PEG [48]. They offer extended period antifouling character and less oxidative degradation in oxidative and biological media, relative to PEG. As a consequence, they have gained considerable attention as the non-fouling surface coatings [49]. POxs with the optimized grafting density have close protein repellency to PEG and different techniques are used to anchor them to the surface including “graft-from,” “graft-to,” and PLL-g-POx copolymers [48].

Further, Zwitterionic polymers have recently become promising PEG alternatives. They are a subset of materials with equal anions and cations alongside their polymer chains. These polymers comprise negative and positive charged groups embedded into their structure, which make them greatly hydrophilic non-fouling compounds. Based on anions, zwitterionic polymers can be categorized into phosphorylcholine (PC), sulfobetaine (SB), and carboxy betaine (CB) [24]. Similar to PEG, their antifouling properties are firmly correlated with the hydrated layer formed on these polymers, acting as the physical obstacle for proteins and bacteria adhesion. Zwitterionic polymers show extremely low adsorption of proteins, because of their net charge neutrality. Further, the hydrophilicity of these polymers is more than PEG owing to an intense interaction with molecules of water through ionic solvation rather than hydrogen bonding utilized by PEG, enhancing antifouling properties of zwitterionic materials [50].

3.2. Surface Morphology Modification

Another approach to prevent the initial bacterial attachment is to utilize superhydrophobic surfaces with a contact angle $> 150^\circ$ and roll-off angle $< 10^\circ$ (the minimum surface inclining angle at which droplets of liquids start rolling off) for water. These are at odds with superhydrophilic surfaces, displaying low contact angles typically $< 10^\circ$. Because of their low surface energies which decrease contaminants and water adhesion and thereby make them simple to clean, superhydrophobic surfaces have been subjected to investigations for antifouling properties [51].

The basic rule to make superhydrophobic surfaces is creating roughness over a surface through different techniques including template deposition, solution immersion, electrodeposition, spray coating, chemical etching, etc. followed by functionalization via material with low surface energy [52].

Non-wettability of the superhydrophobic surfaces is the basic principle behind their usage for bacterial biofilm reduction which does not favor the attachment of planktonic bacteria [51, 53, 54]. For superhydrophobic surfaces, synergistic actions of surface energy and roughness improve the property of the surface. Minimal contact between the implant surface and the bacteria is feasible to attain with efficient roughness. Alongside such benefits, the cells of bacteria respond to the topography of the surface (particularly with micron-sized roughness) which changes their morphology leading to strong attachment over the surface [55]. The surface energy significance of the substrate has been pointed out, influencing the adhesion dynamics of the bacteria i.e., lower surface en-

ergy leads to the reduction in bacterial adhesion [56]. Hence, besides roughness, the low energy of the surface has equal importance. In other words, appropriate roughness and low energy of the surface lead to the contact area reduction and the adhesion restriction, respectively. In this regard, Tang et al. [57] carried out titanium substrate modification with TiO_2 nanotubes and subsequent functionalization with 1H, 1H, 2H, 2H-perfluoroctyl-triethoxysilane (TiS) to obtain a superhydrophobic surface. Super-hydrophobicity was observed to effectively decrease the adhesion of the bacteria over titanium surface with nanotube and titanium surface-functionalized with TiS. Moazzam et al. [58] modified an aluminum surface with micro/nanostructure and silanized to achieve super-hydrophobicity, which not only could provide an ability to control bacterial adhesion, protein adsorption, and biocompatibility but also could obviate the issue of Al-alloys long-term toxicity [59].

4. Bactericidal Surfaces

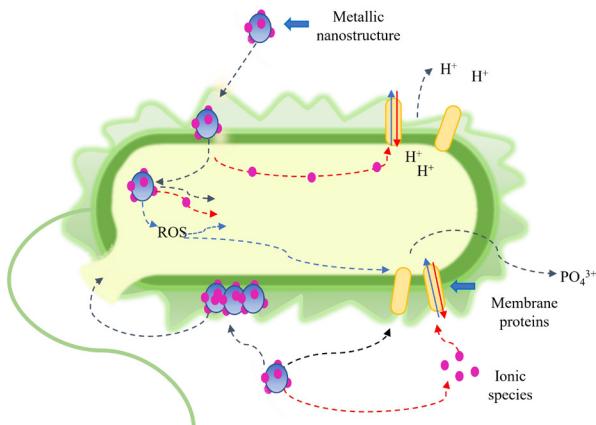
Even though the adhesion of bacteria can be significantly reduced by micro-structuring or surface coating, it is not easy to entirely remove adhesion, and attachment of some bacteria may still occur to the implant surface. This can provide biofilm development on the surface of the implant, which is troubous to treat. Hence, it is important to employ a second defense line dealing with bacteria that overcome the antifouling function of the surface treatment. Contact killing is an approach to eliminate adhered pathogens entirely. This kind of anti-infection approach is generally comprised of bactericidal agent immobilization on the implant surface, therefore making a functional surface with the bactericidal ability [60].

4.1. Active Polymer Coating

The cells of microbes commonly contain a net negative charge because of the presence of negatively charged phospholipids at the exterior Gram-negative bacteria's membrane and teichoic acid membrane protein in Gram-positive bacteria. Hence, cationic polymers can provide effective adsorption at the surface of the bacterial cell. such cationic polymers can simply penetrate through the membrane of the cell, as they are sufficiently amphiphilic. This leads to cell disruption, causing cytoplasmic constituent leakage, which eventually induces the death of the cell. Therefore, cationic polymers have been employed to design greatly vigorous antimicrobial surfaces, which can offer the killing of bacteria just via contact. The suppositions of these polymers' action in bacteria-killing have been corroborated by many pieces of research using atomic force microscopy (AFM), two colors fluorescence assays, trans-

mission electron microscopy (TEM), monitoring the loss of constituents of the bacterial cell, and dye leakage from liposomes which imitate the membrane of bacterial cell [61]. Cationic polymers most likely damage the wall of the cell membrane via lysis, inducing the dissemination of cellular constituents in the solution. The antimicrobial efficacy of the cationic polymers is directly commensurate with the number of cationic groups, constitutive alkyl chain length, and hydrophobicity [62]. Cationic polymers with antimicrobial functions are summarized in Table 1.

4.2. Antimicrobial Peptides


Antimicrobial peptides (AMPs), immune effector molecules of plants, animals, and microorganisms, have gained considerable attention as the agents solving the problems related to IAI. In other words, they present antimicrobial activity against antibiotic-resistant bacteria which reside within the biofilms [72]. AMPs are mainly cationic, amphipathic peptides, displaying antimicrobial activity against fungi, bacteria, and (enveloped) viruses. Interaction of AMPs with the specific component of the cell envelope of the bacteria results in destabilization, disruption, and/or depolarization of the plasma membrane of the bacteria, causing to death of bacterial cells within minutes [73]. In this regard, Kazemzadeh-Narbat et al. [74] coated the titanium surface with calcium phosphate loaded with Tet213 (KRWKWWRRRC), a cationic antimicrobial peptide, (CaP-AMP). They reported the ability of CaP-AMP coating to kill both *P. aeruginosa* and *S. aureus* bacteria within 30 min *in-vitro*. A parotid secretory protein-derived AMP, called GL13K, has been demonstrated to have both bacteriostatic and bactericidal capacity [30]. GL13K peptide coating is bactericidal *in-vitro*, inhibiting the growth of biofilm for peri-implantitis' pathogens, for instance, *P. aeruginosa*, *P. gingivalis*, and *Strep. gordonii* under static growth conditions [75, 76]. In addition, antimicrobial activity of AMP surfaces has been reported against *E. coli* and *S. epidermidis* under static growth conditions [77] and *Strep. gordonii* under dynamic growth conditions [78]. A summary on AMPs are presented in Table 2.

Because of the non-specific and rapid action mechanisms, the risk of development of resistance is typically considered to be low. However, the resistance of bacteria to AMPs can happen and several resistance mechanisms have been reported which include envelope structure alterations of cell and membrane envelope enhancing positive charge, efflux pumps upregulation, and peptide proteolytic degradation [88]. For example, it has been reported that resistance to the human cathelicidin LL-37 includes the peptide degradation via bacterial proteolytic enzymes, efflux pumps upregulation, and also down-regulation of LL-37 induced by bacteria [89]. In low concentrations of magnesium or calcium ions, like in blood plasma, the activation of pmr (polymyxin resistance) op-

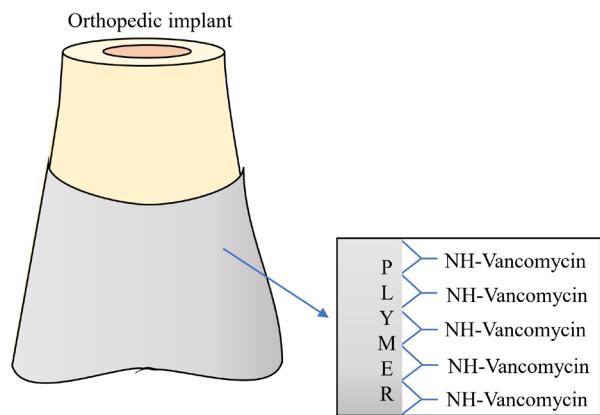
Table 1.

Cationic polymers with antimicrobial function.

Polymer	Action Mechanism	Affected Bacteria	Ref
Quaternary Ammonium Compounds (QAC)	denaturing structural enzymes and proteins through the electrostatic interaction between the negatively charged membrane of bacteria and positively charged QAC and afterward hydrophobic QAC tail integration into the hydrophobic membrane core of bacteria.	<i>MRSA</i>	[63, 64]
Chitosan	pH-dependent antimicrobial activity. hydrophobic interaction and chelation effects at $\text{pH} > \text{pKa}$ and electrostatic interaction between the cell wall of bacteria and protonated amino groups at $\text{pH} < \text{pKa}$ results in antibacterial activity.	<i>E. coli</i> , <i>S. aureus</i>	[65-67]
Poly- ϵ -lysine	Destruction of the bacterial membrane structure and acceleration of the death of bacteria through surface potential interference and oxidative stress induction.	<i>E. coli</i> , <i>MRSA</i>	[68, 69]
N -halamines	cell inactivation or cell inhibition through targeting amino or thiol groups of proteins by oxidative halogen (Br^- or Cl^-), upon direct contact.	<i>E. coli</i> , <i>S. aureus</i>	[61, 70]
Polyethylenimine (Branched)	Rupture of bacterial cell membrane via electrostatic interaction between the negatively charged membrane of bacteria and positively charged polyethyleneimine	<i>P. aeruginosa</i> , <i>MRSA</i>	[67, 71]

Fig. 3. Schematic of antibacterial mechanisms of mNPs.

eron occurs by *P. aeruginosa*, mediating N-arabinose addition to its lipopolysaccharide. This makes the exterior bacterial cell's surface more positively charged, and consequently repels the cationic AMPs [89]. Therefore, bacterial resistance to AMPs is feasible for several species of bacteria, but it has not been examined such resistance development to novel synthetic AMPs.


AMPs show not only direct antimicrobial activity but also immunomodulatory activities. For instance, they can hinder the excessive pro-inflammatory responses resulting from endotoxins of bacteria such as lipoteichoic acid and lipoteichoic acid of Gram-positive bacteria and lipopolysaccharide of Gram-negative bacteria [90].

Wound healing, osteogenic, and angiogenesis activity are the other desired characteristics of AMPs. In-vivo study of trabecular bone growth has found osteoconductive properties of cylindrical Ti implants coated with HHC36, an antimicrobial peptide [82]. Similarly, pro-osteogenic and anti-biofilm activities have been displayed by fusion peptide P15-CSP [91]. Further, in NOD/SCID mice, acceleration of bone repair and rat calvarial bone defect model, promotion of bone regeneration has been provided by LL-37 [92, 93]. However, high manufacturing cost, uncontrolled toxicity, degradation via the host proteases, and cytotoxic effects on eukaryotic cells have limited practical applications of AMPs [94].

Table 2.

Overview of AMP associated coatings

AMP	Coating system	Substrate	Affected Bacteria	Ref
	TiO ₂ nanotubes	Ti	<i>S. aureus</i>	[79]
HHC-36	TiO ₂ nanotubes, CaP, POPC	Ti	<i>S. aureus</i> , <i>P. aeruginosa</i>	[80]
	poly(DMA-co-AP-MA) brush	Ti	<i>P. aeruginosa</i>	[81]
Tet-213	CaP	Ti	<i>S. aureus</i> , <i>P. aeruginosa</i>	[82]
Tet-213, Tet-20, Tet-21, Tet-26, 010cys, HH2, MXX226	PDMA brush	Ti	<i>S. aureus</i> , <i>P. aeruginosa</i>	[83]
LL-37	-	Ti	<i>P. aeruginosa</i>	[84]
PSI-10	HA	AZ91	<i>S. aureus</i>	[85]
Nisin	-	Stainless steel	<i>E. coli</i> , <i>Bacillus subtilis</i>	[86]
magainin I	-	Stainless steel	<i>Listeria ivanovii</i>	[87]

Fig. 4. Schematic of Vancomycin covalently linked to the polymer surface.

4.3. Metallic Nanoparticles

The coatings and/or surfaces incorporated with metallic nanoparticles (mNPs), as the modern generation of surface modification, have been subjected to extensive *in-vitro* and *in-vivo* preclinical studies [95, 96]. Functionalization of surfaces via loading or charging with some type of compounds or mNPs offers numerous benefits over common surfaces. These systems have shown desired outcomes, including inhibition of bacterial adhesion and biofilm formation, betterment of adhesion and osteogenic expression, and even anti-inflammatory efficacy [97]. Many pieces of research have focused on the antibacterial application of mNPs, generated from silver, gold, copper, zinc, and some other metals [95, 98, 99].

In general, the action of the antibiotics involves the inhibition of survival factors, or evolution of the bacterial cell, which favor acquired resistance mechanisms with effect reduction over time. It should be noted that resistance development against metals is more intricate for the cells of bacteria. They also have antibacterial ability against a wide spectrum of gram-negative and gram-positive bacteria. As result, the usage of systems releasing mNPs is in high demand on the systemic antibiotics reduction for topical surgery [100].

The antibacterial mechanisms of mNPs might differ depending on their type [24]. The accepted mechanisms to damage the cells of the bacteria include oxidative stress via reactive oxygen species (ROS) generation, free metal ions release which acts through the intra- and extra-cellular pathways, and disruption of the membrane via their physical structures (Fig. 3) [97].

covalently immobilization or coating of mNPs onto the implant surface provides antibacterial functioning to the surface [24]. For example, Gao et al. [101] employed TiAg magnetron sputtering and anodization to prepare Ag₂O nanoparticle embedded TiO₂ nanotube (NT) arrays. They reported the ability of NT-Ag₂O arrays to kill *S. aureus* and *E. coli* even after 28 days immersion, showing long-term antibacterial capacity. Similarly, Hengel et al. [102] used plasma electrochemical oxidation to fabricate zinc and silver nanoparticles embedded TiO₂ layer on the porous titanium implant surface. Releasing of zinc and silver ions was reported for up to 28 days, showing well bactericidal activity to methicillin-resistant *S. aureus* (MRSA). Further, producing ROS by bio-functionalized implants facilitated the ability of bacterial contact killing. In addition, their loading into the hydrogel and subsequently coating onto the implant surface offer an antibacterial action. In this regard, Xu et al. [103] loaded Ag NPs into poly(hydroxyethyl methacrylate) hydrogel with interconnected, spherical pores. good antibacterial properties were shown against both Gram-negative bacteria (*E. coli*) and Gram-positive

bacteria (*S. aureus*) *in-vitro*. It was also greatly effective at bacterial cell growth inhibition. The main mNPs used in the bactericidal system for implants are presented in Table 3.

Interaction between nanomaterials and biological systems is significantly affected by their surface charge, shape, aggregation status, and size. The great importance of these parameters has been reported for nano-silver (nAg) to its antibacterial activity. A higher surface-to-volume ratio is possessed by nAg with the smaller size, which facilitates Ag ion release by providing more Ag atoms exposed to the biological solution. Further, entrance to bacteria can be simplified by small nAg, and ROS generation can be promoted because of its high surface energy, which causes stronger oxidative stress in the cells of bacteria [104]. However, greater cytotoxicity against host cells has been shown by the smaller ones. [24].

4.4. Ion Implantation

Because of broad-spectrum bactericidal activity of elemental ions such as chlorine (Cl), calcium (Ca), fluorine (F), iodine (I), zinc (Zn), selenium (Se) cerium (Ce), and copper (Cu) against both Gram-negative and Gram-positive bacteria, they are mostly considered to fabricate the antibacterial coatings. The ions' bactericidal activity is dependent on their gradual release from the implant surface into the surrounding host tissue. Hydroxylation into greatly reactive species including hydrogen peroxide (H_2O_2), hydrochloric acid (HCl), superoxide (O_2^-), hypochlorous acid (HOCl) is one of the bactericidal mechanisms of implanted ions, which leads to bacterial cell membranes oxidation, causing enhanced cell permeability and eventually death of the cells. They can also cause to prevent bacterial metabolism [116, 117].

In the field of orthopedic implants, stimulating bone integration and bacterial infection prevention can be simultaneously achieved by the incorporation of antibacterial metallic ions into bioactive materials such as hydroxyapatite (HA). In this regard, several antibacterial HA coatings including Cu-carbonated HA [118, 119], Ag-HA [120], Ag/Sr-HA [121],

Cu/Zn-HA [118], Sr/Cu-HA [122], have been developed. For instance, Hidalgo-Robatto et al. [123] produced HA coatings doped with Zn and Cu on the implant surfaces via pulsed laser deposition (PLD) for simultaneous osseointegration promotion and biofilm formation inhabitation. Doping of Zn and Cu provided antibacterial features to the coatings, leading to a notable reduction in *S. aureus* and *E. coli* biofilms [124].

4.5. Antibiotic-Loaded Coatings

Infections have been often treated with antibiotics. However, as described above, the unsuitable usage of antibiotics has resulted in the development of many kinds of antibiotic-resistant bacteria, mainly MRSA. Recently, multiantibiotic-resistant superbugs have also developed, which bring high challenges for controlling clinical implant infection. Contrary to the conventional infection management via systemic antibiotics, the effective concentration of antibiotics can be achieved by antibiotic-loaded coatings, providing local drug delivery. The risk of antibiotic resistance can be also decreased by the local antibiotic application. Mixing and co-deposition the antibiotic molecules with the polymer matrix is the conventional manner to make the antibiotic-loaded coatings [125, 126].

A wide range of antibiotics including levofloxacin, gentamicin, vancomycin, etc. has been used to gain surface antibacterial properties (Table 4). In addition, phytochemicals such as ferulic acid and curcumin are recent of interest, because they do not cause the resistance of bacteria over their synthetic counterparts [127, 128]. Further, they can combine with bioactive materials to increase the biological coating's performance. This is caused by the synergistic interaction of the released bioactive ions and phytochemical compounds at the implant site [129].

However, controlled release of the antibiotics is difficult to be achieved by the conventional single-layer antibiotic-loaded coatings. In these systems, a large part of the loaded antibiotics is released after a very short period [125], since inter-molecular bonding between the components of the coatings and the molecules of the antibiotics is weak [130]. This burst release provides the development of opportunistic pathogens by limitation of bactericidal time and serious tissue toxicity may be induced by releasing the high antibiotic concentrations locally [131]. To obviate this problem, the chemical conjugation of small-molecule anti-

Table 3.
mNPs-containing composite coating used for IAI prevention.

mNP	Coating System	Substrate	Affected bacteria	Ref
Ag	CaP, TiO ₂ nanotubes	Ti	<i>S. aureus</i>	[105]
	polyacrylate-based hydrogel	Ti	<i>S. aureus</i> , <i>E. coli</i> , <i>P. aeruginosa</i>	[106]
	CaP	Ti-6Al-4V	<i>S. aureus</i>	[105]
	poly(dl-lactic-co-glycolic acid)	stainless steel alloy(SNPSA)	MRSA	[107]
ZnO	Chitosan/TiO ₂ layer	Ti	<i>E. coli</i>	[108]
	TiO ₂ nanotubes	Ti	<i>S. aureus</i>	[109]
	bioactive glass/alginate	316L stainless steel	<i>E. coli</i>	[110]
Cu	HA	Ti	<i>S. aureus</i> , <i>E. coli</i>	[98]
	Poly(ethylene glycol diacrylate) hydrogel	316L stainless steel	<i>S. aureus</i> , <i>E. coli</i>	[111]
	Chitosan	316L stainless steel	<i>S. aureus</i> , <i>E. coli</i>	[112]
Au	TiO ₂ nanotubes	Ti	<i>S. aureus</i> , <i>E. coli</i>	[113]
	Chitosan/bovine serum albumin	Ti-6Al-4V	<i>E. coli</i> , <i>Bacillus subtilis</i>	[114]
	Chitosan	NiTi	<i>S. aureus</i>	[115]

Table 4.
Bactericidal coatings containing antibiotic drugs.

Antibacterial Agent	Coating System	Substrate	Affected bacteria	Ref
	calcium phosphate	Ti	<i>S. aureus</i>	[137]
	TiO ₂ nanotubes	Ti	<i>S. aureus</i>	[138]
Vancomycin	Chitosan/BG	Ti	MRSA	[130]
	-	Ti alloy	<i>S. epidermidis</i>	[139]
	poly(d,L-lactide) (PDLLA)	Ti	<i>S. aureus</i>	[140]
Gentamicin	TiO ₂ nanotubes	Ti	<i>S. aureus</i>	[141]
	Chitosan/gelatin/silica NP	316L stainless steel	<i>S. aureus</i> , <i>E. coli</i>	[142]
levofloxacin	Graphene	Ti	<i>S. aureus</i> , <i>E. coli</i>	[143]
Fusidic acid	Chitosan/BG	316L stainless steel	<i>S. aureus</i> , <i>E. coli</i>	[128]
Rifampicin	Mg silicate	Ti	<i>S. aureus</i>	[144]
Fusidic acid and Rifampicin	PLGA nanofibers	Ti	MRSA, <i>S. epidermidis</i>	[145]

biotics to the surface through linkage bonding can be used (Fig. 4) [132]. Antibiotic interruption into the delivery carrier, including mesoporous silica-based nanoparticles [133], halloysite nanotubes [134], magnetic nanoparticles [135], or titania nanotubes [136], and their co-deposition with the matrix of material is another approach, extending the duration of the antibiotic release.

5. Bacteriostatic-Bactericidal Bi-Functional Surface

The incorporation of the antimicrobial agent into an antifouling background has been provided the improvement of antibacterial properties of implant surfaces by the synergistic effect of active and passive approaches. For instance, Peyre et al. [146] reported both bactericidal and protein-repellent surfaces can be achieved by the grafting of magainin I, the antimicrobial peptide, to the surface of TiO_2 , through a PEG cross-linker. Wang et al. [57] used *in situ* crystallization technique to coat the Ti alloy surface with thin zeolite film under hydrothermal conditions. To possess antibacterial properties, the incorporation of a small amount of Ag ions into the zeolite film was done via the ion-exchange process. The antibacterial studies showed Ag-incorporated zeolite coatings significantly inhibit the proliferation of bacteria (MRSA) both on the Ti surface and in the medium of the culture surrounding the Ti material. Further, the additional antifouling feature was provided by the superhydrophilic character of zeolite coating.

To use bi-functional surfaces it must be ensured that biopassive background does not prevent contact between the bacteria and antimicrobial agents. In addition, polymers' biopassive properties can be reduced by antimicrobial agent incorporation. Switchable antibacterial surface advancement is one of the exciting solutions to overcome this issue [147]. The basic of these surfaces is their capability in function switching, consequently being considered within a multi-function approach. This can promote the bacteria-releasing and bacteria-killing ability of the surface [24]. In this regard, Cheng et al. [148] created antifouling and bactericidal switchable surfaces through the conversion of antimicrobial cationic poly(*N,N*-dimethyl-*N*-(ethoxycarbonylmethyl)-*N*-(20-(methacryloyloxy)ethyl) ammoniumbromide) (pCBMA-1 C2) to non-fouling zwitterionic pCBMA-1 by pH change. More than 99.9% of *E. coli* was effectively killed by cationic pCBMA-1 C2 in 1h. Then, by the pH change, the cells of dead bacteria (98%) were released after hydrolyzing of cationic derivative to the zwitterionic polymer.

6. Candidates in Orthopedic Surgery

Silver has been employed in the orthopedics field for over a decade. MUTARS® is one of the most versatile systems for bone replacement which is available in a silver-coated version. In this system, a layer of gold is applied and elementary silver is galvanically deposited onto the implant surface [149]. However, the application of such coatings has been restricted in patients with high postoperative infection risk because of their toxicity issues. A lower profile risk can be provided by low-content silver coating such as Agluna, in which Ag ions stitch into the anodized titanium surface by ion-exchange reaction [150]. Another candidate for antibacterial application in orthopedics is iodine-supported implants, which have been numerously investigated in clinical trials. Gradual leaching of iodine over time makes these coatings favorable for long-term applications [151, 152]. Despite desired antibacterial features provided by surface modification approaches, there is only one randomized-controlled study that was conducted in five European orthopedic centers. They investigated the efficacy of antibiotic-loaded (ciprofloxacin, vancomycin, meropenem, gentamicin, rifampicin, and daptomycin) hydrogels in the prevention of implant infection over control implants and reported a significant reduction in

infection by this system [153]. This is indubitably insufficient to develop such approaches for practical applications and more clinical evidence is needed.

7. New Approaches and Future Perspective

Since none of these antibacterial coatings and surface modification techniques can completely meet clinical requirements, multifunctional and smart coatings are in great notice. There is no distinct formula for these coatings, and these coatings are mainly designed based on our requirements. One model of multifunctional coatings is based on three parts: 1) An anti-adhesive coating to inhibit bacterial adhesion, 2) A bactericidal coating to kill adhered bacteria, and 3) RGD sequences to enhance cell adhesion and osseointegration [154]. Table 5 provides some recent developments in multifunctional and smart coatings and their result. Today nanocontainers conjoined to sensors are in development. The sensor can recognize a small number of bacteria. After recognition, signals are sent to nanocontainers. The shell of nanocontainers is made of stimuli-responsive materials that respond to signals coming from sensors and start to release biomolecules and therapeutic agents entrapped in them. Multifunctional coatings can also enhance the physical, chemical, and mechanical properties of implants [161]. These coatings are more operational than any single method, hence the future of antibacterial coatings is in this path.

Table 5.
Recent developments in multifunctional and smart coatings

Substrates	Biofunctional Elements	Observations	Ref
Ti	PEG + RGD	Reduced <i>S. aureus</i> adhesion; Cell adhesion not studied	[42]
Ti6Al4V-dopamine	Dextran + BMP-2	Less <i>S. aureus</i> and <i>S. epidermidis</i> ; increased osteoblast response	[155]
Ti-dopamine	CM-CH + VEGF	Reduced <i>S. aureus</i> adhesion; increased osteoblast response	[156]
Ti6Al4V-dopamine	CM-CH + BMP-2	Reduced <i>S. aureus</i> and <i>S. epidermidis</i> adhesion; increased osteoblast and mesenchymal stem cell response	[157]
Ti	TNT + Ag2O NPs	Reduced <i>S. aureus</i> and <i>E. coli</i> ; osteoblast-like response not influenced compared to TNTs	[158]
Ti	BMP-2 + vancomycin	Reduced <i>S. epidermidis</i> growth; increased bone marrow stromal cell response	[159]
Ti	EGF + magainin II	Reduced <i>S. aureus</i> and <i>E. coli</i> adhesion; increased fibroblast adhesion	[160]

8. Conclusion

The usage of orthopedic implants is in high demand for prosperous treatment of musculoskeletal problems. Nevertheless, infection is one of the main challenges over the success of implantation procedure, resulting from bacterial adhesion to the implant surface and presenting inevitable clinical, social and economic burden. Hence, many efforts have been made to fabricate the implants with antibacterial property. The ideal approach is to modify the implant surface via altering the surface chemistry or topography which has been highlighted in this review. This approach has been divided into bacteriostatic and bactericidal surfaces, depending on their functional principle against bacteria, which is summarized in Table 6. The combination of these strategies can improve the antibacterial properties of implant surfaces by their synergistic effect.

Table 6.

Surface modification strategies required to prevent bacterial infection.

Approach	Function	Subcategory	Remark	Limitation
Bacteriostatic surface	Anti-adhesive	Topographic modification, Passive polymers coatings	Prevention of bacterial adhesion via their low surface energy, electrostatic repulsion, and steric exclusion repulsion	Attachment of some bacteria
Bactericidal surface	Contact active	Active polymer coatings	Rupture of bacterial cell membrane via electrostatic interaction	Accumulation of dead bacteria
	Biocide release	antimicrobial peptides, metallic nanoparticles, ion implantation, antibiotic-loaded coatings	Death of bacteria via release of antibacterial agent	

REFERENCES

[1] A. Nouri, C. Wen, Introduction to surface coating and modification for metallic biomaterials, *Surface Coating and Modification of Metallic Biomaterials* (2015) 3-60.

[2] A. Pandey, A. Awasthi, K.K. Saxena, Metallic implants with properties and latest production techniques: a review, *Advances in Materials and Processing Technologies* 6(2) (2020) 405-440.

[3] R. Asri, W. Harun, M. Samykano, N. Lah, S. Ghani, F. Tarlochan, M. Raza, Corrosion and surface modification on biocompatible metals: A review, *Materials Science and Engineering: C* 77 (2017) 1261-1274.

[4] F. Sharifianjazi, M. Moradi, N. Parvin, A. Nemati, A.J. Rad, N. Sheysi, A. Abouchenari, A. Mohammadi, S. Karbasi, Z. Ahmadi, Magnetic CoFe2O4 nanoparticles doped with metal ions: a review, *Ceramics International* 46(11) (2020) 18391-18412.

[5] R. Narayan, *Biomedical materials*, Springer2009.

[6] L. Ren, K. Yang, Bio-functional design for metal implants, a new concept for development of metallic biomaterials, *Journal of Materials Science & Technology* 29(11) (2013) 1005-1010.

[7] S. Strange, M.R. Whitehouse, A.D. Beswick, T. Board, A. Burston, B. Burston, F.E. Carroll, P. Dieppe, K. Garfield, R. Gooberman-Hill, One-stage or two-stage revision surgery for prosthetic hip joint infection—the INFORM trial: a study protocol for a randomised controlled trial, *Trials* 17(1) (2016) 1-8.

[8] V.K. Aggarwal, M.R. Rasouli, J. Parvizi, Periprosthetic joint infection: Current concept, *Indian journal of orthopaedics* 47(1) (2013) 10-17.

[9] C.S. Ciobanu, S.L. Iconaru, P. Le Coustumer, L.V. Constantin, D. Predoi, Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria, *Nanoscale Research Letters* 7(1) (2012) 1-9.

[10] D. Alves, M. Olívia Pereira, Mini-review: Antimicrobial peptides and enzymes as promising candidates to functionalize biomaterial surfaces, *Biofouling* 30(4) (2014) 483-499.

[11] X. Zeng, S. Xiong, S. Zhuo, C. Liu, J. Miao, D. Liu, H. Wang, Y. Zhang, Z. Zheng, K. Ting, Nanosilver/poly (dl-lactic-co-glycolic acid) on titanium implant surfaces for the enhancement of antibacterial properties and osteoinductivity, *International journal of nanomedicine* 14 (2019) 1849.

[12] P. Velusamy, S. Chia-Hung, A. Shritama, G.V. Kumar, V. Jeyanthi, K. Pandian, Synthesis of oleic acid coated iron oxide nanoparticles and its role in anti-biofilm activity against clinical isolates of bacterial pathogens, *Journal of the Taiwan Institute of Chemical Engineers* 59 (2016) 450-456.

[13] J.W. Costerton, Z. Lewandowski, D. DeBeer, D. Caldwell, D. Korber, G. James, Biofilms, the customized microniche, *Journal of bacteriology* 176(8) (1994) 2137-2142.

[14] J. Hurlow, K. Couch, K. Laforet, L. Bolton, D. Metcalf, P. Bowler, Clinical biofilms: a challenging frontier in wound care, *Advances in wound care* 4(5) (2015) 295-301.

[15] D. Sun, M. Accavitti, J. Bryers, Inhibition of biofilm formation by monoclonal antibodies against *Staphylococcus epidermidis* RP62A accumulation-associated protein, *Clinical and Vaccine Immunology* 12(1) (2005) 93-100.

[16] M. Jamal, W. Ahmad, S. Andleeb, F. Jalil, M. Imran, M.A. Nawaz, T. Hussain, M. Ali, M. Rafiq, M.A. Kamil, Bacterial biofilm and associated infections, *Journal of the Chinese Medical Association* 81(1) (2018) 7-11.

[17] T.-F.C. Mah, G.A. O'Toole, Mechanisms of biofilm resistance to antimicrobial agents, *Trends in microbiology* 9(1) (2001) 34-39.

[18] R.J. Gillis, K.G. White, K.-H. Choi, V.E. Wagner, H.P. Schweizer, B.H. Iglesias, Molecular basis of azithromycin-resistant *Pseudomonas aeruginosa* biofilms, *Antimicrobial agents and chemotherapy* 49(9) (2005) 3858-3867.

[19] C.R. Arciola, D. Campoccia, P. Speziale, L. Montanaro, J.W. Costerton, Biofilm formation in *Staphylococcus* implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials, *Biomaterials* 33(26) (2012) 5967-5982.

[20] M. Sabzi, S.M. Far, S.M.J.C.I. Dezfuli, Characterization of bioactivity behavior and corrosion responses of hydroxyapatite-ZnO nanostructured coating deposited on NiTi shape-memory alloy, *44(17)* (2018) 21395-21405.

[21] M. Sabzi, S.J.I.J.o.A.C.T. Mersagh Dezfuli, Deposition of Al2O3 ceramic film on copper-based heterostructured coatings by aluminizing process: Study of the electrochemical responses and corrosion mechanism of the coating, *16(1)* (2019) 195-210.

[22] S.H. Mousavi Anijdan, M. Sabzi, M. Asadian, H.R.J.I.J.o.A.C.T. Jafarian, Effect of sub-layer temperature during HFCVD process on morphology and corrosion behavior of tungsten carbide coating, *16(1)* (2019) 243-253.

[23] F. Sharifianjazi, A. Esmailkhani, L. Bazli, S. Eskandarinezhad, S. Khaksar, P. Shafiee, M. Yusuf, B. Abdullah, P. Salahshour, F. Sadeghi, A review on recent advances in dry reforming of methane over Ni- and Co-based nanocatalysts, *International Journal of Hydrogen Energy* (2021).

[24] A. Uneputty, A. Dávila-Lezama, D. Garibo, A. Oknianska, N. Bogdanchikova, J. Hernández-Sánchez, A. Susarrey-Arce, Strategies applied to modify structured and smooth surfaces: A step closer to reduce bacterial adhesion and biofilm formation, *Colloid and Interface Science Communications* 46 (2022) 100560.

[25] W.M. Dunne Jr, Bacterial adhesion: seen any good biofilms lately?, *Clinical microbiology reviews* 15(2) (2002) 155-166.

[26] C. Gómez-Suárez, H.J. Busscher, H.C. van der Mei, Analysis of bacterial detachment from substratum surfaces by the passage of air-liquid interfaces, *Applied and environmental microbiology* 67(6) (2001) 2531-2537.

[27] J. Del Pozo, R. Patel, The challenge of treating biofilm-associated bacterial infections, *Clinical Pharmacology & Therapeutics* 82(2) (2007) 204-209.

[28] C.C. De Carvalho, Biofilms: recent developments on an old battle, *Recent patents on biotechnology* 1(1) (2007) 49-57.

[29] S. Veerachamy, T. Yarlagadda, G. Manivasagam, P.K. Yarlagadda, Bacterial adherence and biofilm formation on medical implants: a review, *Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine* 228(10) (2014) 1083-1099.

[30] L. Zhao, P.K. Chu, Y. Zhang, Z. Wu, Antibacterial coatings on titanium implants, *Journal of Biomedical Materials Research Part B: Applied Biomaterials* 91(1) (2009) 470-480.

[31] U. Filipović, R.G. Dahmane, S. Ghannouchi, A. Zore, K. Bohinc, Bacterial adhesion on orthopedic implants, *Advances in Colloid and Interface Science* (2020) 102228.

[32] R. Konradi, C. Acikgoz, M. Textor, Polyoxazolines for nonfouling surface coatings—a direct comparison to the gold standard PEG, *Macromolecular rapid communications* 33(19) (2012) 1663-1676.

[33] J. Buxadera-Palomero, C. Calvo, S. Torrent-Camarero, F.J. Gil, C. Mas-Moruno, C. Canal, D. Rodríguez, Biofunctional polyethylene glycol coatings on titanium: An in vitro-based comparison of functionalization methods, *Colloids and Surfaces B: Biointerfaces* 152 (2017) 367-375.

[34] K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, N. Nakabayashi, Why do phospholipid polymers reduce protein adsorption?, *Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials* 39(2) (1998) 323-330.

[35] L.L. Guo, Y.F. Cheng, X. Ren, K. Gopinath, Z.S. Lu, C.M. Li, L.Q. Xu, Simultaneous deposition of tannic acid and poly (ethylene glycol) to construct the antifouling polymeric coating on Titanium surface, *Colloids and Surfaces B: Biointerfaces* 200 (2021) 111592.

[36] K. Glinel, A.M. Jonas, T. Jouenne, J. Leprince, L. Galas, W.T. Huck, Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide, *Bioconjugate chemistry* 20(1) (2009) 71-77.

[37] S. Chen, L. Li, C. Zhao, J. Zheng, Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials, *Polymer* 51(23) (2010) 5283-5293.

[38] P. Kingshott, J. Wei, D. Bagge-Ravn, N. Gadegaard, L. Gram, Covalent attachment of poly (ethylene glycol) to surfaces, critical for reducing bacterial adhesion, *Langmuir* 19(17) (2003) 6912-6921.

[39] B.K.D. Ngo, M.A. Grunlan, Protein resistant polymeric biomaterials, *ACS Publications*, 2017.

[40] H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings, *science* 318(5849) (2007) 426-430.

[41] J.L. Dalsin, L. Lin, S. Tosatti, J. Vörös, M. Textor, P.B. Messersmith, Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA, *Langmuir* 21(2) (2005) 640-646.

[42] L. Harris, S. Tosatti, M. Wieland, M. Textor, R. Richards, *Staphylococcus aureus* adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly (L-lysine)-grafted-poly (ethylene glycol) copolymers, *Biomaterials* 25(18) (2004) 4135-4148.

[43] R. Maddikeri, S. Tosatti, M. Schuler, S. Chessari, M. Textor, R. Richards, L. Harris, Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: a first step toward cell selective surfaces, *Journal of Biomedical Materials Research Part A* 84(2) (2008) 425-435.

[44] S. Saxon, C. Portmann, S. Tosatti, K. Gademann, S. Zurcher, M. Textor, Surface assembly of catechol-functionalized poly (L-lysine)-graft-poly (ethylene glycol) copolymer on titanium exploiting combined electrostatically driven self-organization and biomimetic strong adhesion, *Macromolecules* 43(2) (2010) 1050-1060.

[45] G.L. Kenausis, J. Vörös, D.L. Elbert, N. Huang, R. Hofer, L. Ruiz-Taylor, M. Textor, J.A. Hubbell, N.D. Spencer, Poly (L-lysine)-g-poly (ethylene glycol) layers on metal oxide surfaces: Attachment mechanism and effects of polymer architecture on resistance to protein adsorption, *The Journal of Physical Chemistry B* 104(14) (2000) 3298-3309.

[46] X. Fan, L. Lin, P.B. Messersmith, Cell fouling resistance of polymer brushes grafted from Ti substrates by surface-initiated polymerization: effect of ethylene glycol side chain length, *Biomacromolecules* 7(8) (2006) 2443-2448.

[47] D.W. Branch, B.C. Wheeler, G.J. Brewer, D.E. Leckband, Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture, *Biomaterials* 22(10) (2001) 1035-1047.

[48] L. Tauhardt, K. Kempe, M. Gottschaldt, U.S. Schubert, Poly (2-oxazoline) functionalized surfaces: from modification to application, *Chemical Society Reviews* 42(20) (2013) 7998-8011.

[49] B. Pidhatika, M. Rodenstein, Y. Chen, E. Rakhmatullina, A. Mühlebach, C. Acikgöz, M. Textor, R. Konradi, Comparative stability studies of poly (2-methyl-2-oxazoline) and poly (ethylene glycol) brush coatings, *Biointerphases* 7(1) (2012) 1.

[50] N. Erathodiyil, H.-M. Chan, H. Wu, J.Y. Ying, Zwitterionic polymers and hydrogels for antibiofouling applications in implantable devices, *Materials Today* 38 (2020) 84-98.

[51] K. Bartlet, S. Movafaghi, L.P. Dasi, A.K. Kota, K.C. Popat, Antibacterial activity on superhydrophobic titania nanotube arrays, *Colloids and Surfaces B: Biointerfaces* 166 (2018) 179-186.

[52] S. Ghaffari, M. Aliofkazraei, G.B. Darband, A. Zakeri, E. Ahmadi, Review of superoleophobic surfaces: Evaluation, fabrication methods, and industrial applications, *Surfaces and Interfaces* 17 (2019) 100340.

[53] Z. Wang, Y. Su, Q. Li, Y. Liu, Z. She, F. Chen, L. Li, X. Zhang, P. Zhang, Researching a highly anti-corrosion superhydrophobic film fabricated on AZ91D magnesium alloy and its anti-bacteria adhesion effect, *Materials Characterization* 99 (2015) 200-209.

[54] J. Bruzaud, J. Tarrade, E. Celia, T. Darmanin, E.T. De Givenchy, F. Guittard, J.-M. Herry, M. Guilbaud, M.-N. Bellon-Fontaine, The design of superhydrophobic stainless steel surfaces by controlling nanostructures: a key parameter to reduce the implantation of pathogenic bacteria, *Materials Science and Engineering: C* 73 (2017) 40-47.

[55] T. Liu, L. Dong, T. Liu, Y. Yin, Investigations on reducing microbiologically-influenced corrosion of aluminum by using super-hydrophobic surfaces, *Electrochimica Acta* 55(18) (2010) 5281-5285.

[56] S. Mazumder, J.O. Falkingham III, A.M. Dietrich, I.K. Puri, Role of hydrophobicity in bacterial adherence to carbon nanostructures and biofilm formation, *Biofouling* 26(3) (2010) 333-339.

[57] P. Tang, W. Zhang, Y. Wang, B. Zhang, H. Wang, C. Lin, L. Zhang, Effect of superhydrophobic surface of titanium on *staphylococcus aureus* adhesion, *Journal of Nanomaterials* 2011 (2011).

[58] P. Moazzam, A. Razmjou, M. Golabi, D. Shokri, A. Landarani-Isfahani, Investigating the BSA protein adsorption and bacterial adhesion of Al-alloy surfaces after creating a hierarchical (micro/nano) superhydrophobic structure, *Journal of Biomedical Materials Research Part A* 104(9) (2016) 2220-2233.

[59] A. Masoudian, M. Karbasi, F. SharifianJazi, A. Saidi, Developing Al2O3-TiC in-situ nanocomposite by SHS and analyzing the effects of Al content and mechanical activation on microstructure, *Journal of Ceramic Processing Research* 14(4) (2013) 486-491.

[60] F. Costa, I.F. Carvalho, R.C. Montelaro, P. Gomes, M.C.L. Martins, Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces, *Acta biomaterialia* 7(4) (2011) 1431-1440.

[61] L. Timofeeva, N. Kleshcheva, Antimicrobial polymers: mechanism of action, factors of activity, and applications, *Applied microbiology and biotechnology* 89(3) (2011) 475-492.

[62] N. Gour, K.X. Ngo, C. Vebert-Nardin, Anti-I infectious Surfaces Achieved by Polymer Modification, *Macromolecular Materials and Engineering* 299(6) (2014) 648-668.

[63] H. Bouloussa, A. Saleh-Mghir, C. Valotteau, C. Cherifi, N. Hafnia, M. Cohen-Solal, C. Court, A.C. Crémieux, V. Humblot, A Graftable Quaternary Ammonium Biocidal Polymer Reduces Biofilm Formation and Ensures Biocompatibility of Medical Devices, *Advanced Materials Interfaces* 8(5) (2021) 2001516.

[64] G.R. Rudramurthy, M.K. Swamy, U.R. Sinniah, A. Ghasemzadeh, Nanoparticles: alternatives against drug-resistant pathogenic microbes, *Molecules* 21(7) (2016) 836.

[65] M.H. Abdulkareem, A.H. Abdalsalam, A.J. Bohan, Influence of chitosan on the antibacterial activity of composite coating (PEEK/HAp) fabricated by electro-phoretic deposition, *Progress in Organic Coatings* 130 (2019) 251-259.

[66] B. Li, X. Xia, M. Guo, Y. Jiang, Y. Li, Z. Zhang, S. Liu, H. Li, C. Liang, H. Wang, Biological and antibacterial properties of the micro-nanostructured hydroxyapatite/chitosan coating on titanium, *Scientific Reports* 9(1) (2019) 1-10.

[67] K.-S. Huang, C.-H. Yang, S.-L. Huang, C.-Y. Chen, Y.-Y. Lu, Y.-S. Lin, Recent advances in antimicrobial polymers: a mini-review, *International journal of molecular sciences* 17(9) (2016) 1578.

[68] Z. Yuan, Y. He, C. Lin, P. Liu, K. Cai, Antibacterial surface design of biomedical titanium materials for orthopedic applications, *Journal of Materials Science & Technology* 78 (2021) 51-67.

[69] M. Xu, Q. Song, L. Gao, H. Liu, W. Feng, J. Huo, H. Jin, L. Huang, J. Chai, Y. Pei, Single-step fabrication of catechol-e-poly-L-lysine antimicrobial paint that prevents superbug infection and promotes osteoconductivity of titanium implants, *Chemical Engineering Journal* 396 (2020) 125240.

[70] B. Tao, X. Shen, Z. Yuan, Q. Ran, T. Shen, Y. Pei, J. Liu, Y. He, Y. Hu, K. Cai, N-halamine-based multilayers on titanium substrates for antibacterial application, *Colloids and Surfaces B: Biointerfaces* 170 (2018) 382-392.

[71] J.S. Lee, S.J. Lee, S.B. Yang, D. Lee, H. Nah, D.N. Heo, H.-J. Moon, Y.-S. Hwang, R.L. Reis, J.-H. Moon, Facile preparation of mussel-inspired antibiotic-decorated titanium surfaces with enhanced antibacterial activity for implant applications, *Applied Surface Science* 496 (2019) 143675.

[72] R.E. Hancock, H.-G. Sahl, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies, *Nature biotechnology* 24(12) (2006) 1551-1557.

[73] M. Pasupuleti, A. Schmidchen, M. Malmsten, Antimicrobial peptides: key components of the innate immune system, *Critical reviews in biotechnology* 32(2) (2012) 143-171.

[74] M. Kazemzadeh-Narbat, J. Kindrachuk, K. Duan, H. Jenssen, R.E. Hancock, R. Wang, Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections, *Biomaterials* 31(36) (2010) 9519-9526.

[75] L. Zhou, Y. Lai, W. Huang, S. Huang, Z. Xu, J. Chen, D. Wu, Biofunctionalization of microgroove titanium surfaces with an antimicrobial peptide to enhance their bactericidal activity and cytocompatibility, *Colloids and Surfaces B: Biointerfaces* 128 (2015) 552-560.

[76] M. Yoshinari, T. Kato, K. Matsuzaka, T. Hayakawa, K. Shiba, Prevention of biofilm formation on titanium surfaces modified with conjugated molecules comprised of antimicrobial and titanium-binding peptides, *Biofouling* 26(1) (2010) 103-110.

[77] D.T. Yucesoy, M. Hnilova, K. Boone, P.M. Arnold, M.L. Snead, C. Tamerler, Chimeric peptides as implant functionalization agents for titanium alloy implants with antimicrobial properties, *Jom* 67(4) (2015) 754-766.

[78] X. Chen, H. Hirt, Y. Li, S.-U. Gorr, C. Aparicio, Antimicrobial GL13K peptide coatings killed and ruptured the wall of *Streptococcus gordonii* and prevented formation and growth of biofilms, *PLoS One* 9(11) (2014) e111579.

[79] M. Ma, M. Kazemzadeh-Narbat, Y. Hui, S. Lu, C. Ding, D.D. Chen, R.E. Hancock, R.J.J.o.b.m.r.P.A. Wang, Local delivery of antimicrobial peptides using self-organized TiO₂ nanotube arrays for peri-implant infections, 100(2) (2012) 278-285.

[80] M. Kazemzadeh-Narbat, B.F. Lai, C. Ding, J.N. Kizhakkedathu, R.E. Hancock, R.J.B. Wang, Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections, 34(24) (2013) 5969-5977.

[81] G. Gao, K. Yu, J. Kindrachuk, D.E. Brooks, R.E. Hancock, J.N.J.B. Kizhakkedathu, Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity, 12(10) (2011) 3715-3727.

[82] M. Kazemzadeh-Narbat, S. Noordin, B.A. Masri, D.S. Garbuz, C.P. Duncan, R.E. Hancock, R. Wang, Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium, Journal of Biomedical Materials Research Part B: Applied Biomaterials 100(5) (2012) 1344-1352.

[83] G. Gao, D. Lange, K. Hilpert, J. Kindrachuk, Y. Zou, J.T. Cheng, M. Kazemzadeh-Narbat, K. Yu, R. Wang, S.K.J.B. Straus, The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides, 32(16) (2011) 3899-3909.

[84] C. Nagant, B. Pitts, K. Nazmi, M. Vandenbranden, J. Bolscher, P.S. Stewart, J.-P.J.A.a. Dehaye, chemotherapy, Identification of peptides derived from the human antimicrobial peptide LL-37 active against biofilms formed by *Pseudomonas aeruginosa* using a library of truncated fragments, 56(11) (2012) 5698-5708.

[85] J. Tian, S. Shen, C. Zhou, X. Dang, Y. Jiao, L. Li, S. Ding, H.J.J.o.M.S.M.i.M. Li, Investigation of the antimicrobial activity and biocompatibility of magnesium alloy coated with HA and antimicrobial peptide, 26(2) (2015) 1-12.

[86] C. Vreuls, G. Zocchi, G. Garitte, C. Archambeau, J. Martial, C.J.B. Van de Weerd, Biomolecules in multilayer film for antimicrobial and easy-cleaning stainless steel surface applications, 26(6) (2010) 645-656.

[87] A. Héquet, V. Humbot, J.-M. Berjeaud, C.-M.J.C. Pradier, S.B. Biointerfaces, Optimized grafting of antimicrobial peptides on stainless steel surface and biofilm resistance tests, 84(2) (2011) 301-309.

[88] M. Goytia, J.L. Kandler, W.M. Shafer, Mechanisms and significance of bacterial resistance to human cationic antimicrobial peptides, *Antimicrobial peptides and innate immunity*, Springer2013, pp. 219-254.

[89] K. Bandurska, A. Berdowska, R. Barczyńska-Felusiak, P. Krupa, Unique features of human cathelicidin LL-37, *Biofactors* 41(5) (2015) 289-300.

[90] S.C. Mansour, O.M. Pena, R.E. Hancock, Host defense peptides: front-line immunomodulators, *Trends in immunology* 35(9) (2014) 443-450.

[91] X. Li, A. Contreras-Garcia, K. LoVetri, N. Yakandawala, M.R. Wertheimer, G. De Crescenzo, C.D. Hoemann, Fusion peptide P15-CSP shows antibiofilm activity and pro-osteogenic activity when deposited as a coating on hydrophilic but not hydrophobic surfaces, *Journal of Biomedical Materials Research Part A* 103(12) (2015) 3736-3746.

[92] M. Kittaka, H. Shiba, M. Kajiyama, T. Fujita, T. Iwata, K. Rathvisal, K. Ouhara, K. Takeda, T. Fujita, H. Komatsuwa, The antimicrobial peptide LL37 promotes bone regeneration in a rat calvarial bone defect, *Peptides* 46 (2013) 136-142.

[93] Z. Zhang, J.E. Shively, Acceleration of bone repair in NOD/SCID mice by human monooosteophils, novel LL-37-activated monocytes, *PloS one* 8(7) (2013) e67649.

[94] A. Shahid, B. Aslam, S. Muzammil, N. Aslam, M. Shahid, A. Almatroudi, K.S. Allemailem, M. Saqalein, M.A. Nisar, M.H.J.J.o.A.B. Rasool, F. Materials, The prospects of antimicrobial coated medical implants, 19 (2021) 228000211040304.

[95] P.A. Tran, N. O'Brien-Simpson, J.A. Palmer, N. Bock, E.C. Reynolds, T.J. Webster, A. Deva, W.A. Morrison, A.J. O'connor, Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant *Staphylococcus aureus* and epidermidis: in vitro and in vivo assessment, *International journal of nanomedicine* 14 (2019) 4613.

[96] I.A. van Hengel, M. Riool, L.E. Fratila-Apachitei, J. Witte-Bouma, E. Farrell, A.A. Zadpoor, S.A. Zaat, I. Apachitei, Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant *Staphylococcus aureus*, *Biomaterials* 140 (2017) 1-15.

[97] N. Wang, J.Y.H. Fuh, S.T. Dheen, A. Senthil Kumar, Functions and applications of metallic and metallic oxide nanoparticles in orthopedic implants and scaffolds, *Journal of Biomedical Materials Research Part B: Applied Biomaterials* 109(2) (2021) 160-179.

[98] R. Ghosh, O. Swart, S. Westgate, B.L. Miller, M.Z. Yates, Antibacterial copper-hydroxyapatite composite coatings via electrochemical synthesis, *Langmuir* 35(17) (2019) 5957-5966.

[99] A.H. Saleh, D. Kumar, I. Sirakov, P. Shafiee, M. Arefian, Application of nano compounds for the prevention, diagnosis, and treatment of SARS-coronavirus: A review, *Journal of Composites and Compounds* 3(9) (2021) 230-246.

[100] H.A. Hemeg, Nanomaterials for alternative antibacterial therapy, *International journal of nanomedicine* 12 (2017) 8211.

[101] A. Gao, R. Hang, X. Huang, L. Zhao, X. Zhang, L. Wang, B. Tang, S. Ma, P.K. Chu, The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts, *Biomaterials* 35(13) (2014) 4223-4235.

[102] I. Van Hengel, N. Putra, M. Tierolf, M. Minneboo, A. Fluit, L. Fratila-Apachitei, I. Apachitei, A. Zadpoor, Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria, *Acta biomaterialia* 107 (2020) 325-337.

[103] T. Xu, J. Zhang, Y. Zhu, W. Zhao, C. Pan, H. Ma, L. Zhang, A poly (hydroxyethyl methacrylate)-Ag nanoparticle porous hydrogel for simultaneous in vivo prevention of the foreign-body reaction and bacterial infection, *Nanotechnology* 29(39) (2018) 395101.

[104] L. Guo, W. Yuan, Z. Lu, C.M. Li, Polymer/nanosilver composite coatings for antibacterial applications, *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 439 (2013) 69-83.

[105] R.V. Chernozem, M.A. Surneneva, B. Krause, T. Baumbach, V.P. Ignatov, O. Prymak, K. Loza, M. Epple, F. Ennen-Roth, A. Wittmar, Functionalization of titania nanotubes with electrophoretically deposited silver and calcium phosphate nanoparticles: structure, composition and antibacterial assay, *Materials Science and Engineering: C* 97 (2019) 420-430.

[106] E. De Giglio, D. Cafagna, S. Cometa, A. Allegretta, A. Pedico, L. Giannossa, L. Sabbatini, M. Mattioli-Belmonte, R. Iatta, An innovative, easily fabricated, silver nanoparticle-based titanium implant coating: development and analytical characterization, *Analytical and bioanalytical chemistry* 405(2) (2013) 805-816.

[107] Y. Liu, Z. Zheng, J.N. Zara, C. Hsu, D.E. Soofer, K.S. Lee, R.K. Siu, L.S. Miller, X. Zhang, D. Carpenter, The antimicrobial and osteoinductive properties of silver nanoparticle/poly (DL-lactic-co-glycolic acid)-coated stainless steel, *Biomaterials* 33(34) (2012) 8745-8756.

[108] O. Geuli, I. Lewinstein, D. Mandler, Composition-tailoring of ZnO-hydroxyapatite nanocomposite as bioactive and antibacterial coating, *ACS Applied Nano Materials* 2(5) (2019) 2946-2957.

[109] S. Yao, X. Feng, J. Lu, Y. Zheng, X. Wang, A.A. Volinsky, L.-N. Wang, Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO₂ nanotubes, *Nanotechnology* 29(24) (2018) 244003.

[110] L. Cordero-Arias, S. Cabanas-Polo, O. Goudouri, S.K. Misra, J. Gilabert, E. Valsami-Jones, E. Sanchez, S. Virtanen, A.R. Boccaccini, Electrophoretic deposition of ZnO/alginate and ZnO-bioactive glass/alginate composite coatings for antimicrobial applications, *Materials Science and Engineering: C* 55 (2015) 137-144.

[111] S. Cometa, R. Iatta, M.A. Ricci, C. Ferretti, E. De Giglio, Analytical characterization and antimicrobial properties of novel copper nanoparticle-loaded electro-synthesized hydrogel coatings, *Journal of bioactive and compatible polymers* 28(5) (2013) 508-522.

[112] E. Tabesh, H. Salimjazi, M. Kharaziha, M. Mahmoudi, M. Hejazi, Development of an in-situ chitosan-copper nanoparticle coating by electrophoretic deposition, *Surface and Coatings Technology* 364 (2019) 239-247.

[113] J. Li, H. Zhou, S. Qian, Z. Liu, J. Feng, P. Jin, X. Liu, Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application, *Applied Physics Letters* 104(26) (2014) 261110.

[114] S. Panda, C.K. Biswas, S. Paul, Coating of Ti-6Al-4V alloy with chitosan and BSA for enhanced biocompatibility, *Materials Today: Proceedings* 33 (2020) 5577-5581 DOI:.

[115] R.A. Ahmed, S.A. Fadl-allah, N. El-Bagoury, S.M.G. El-Rab, Improvement of corrosion resistance and antibacterial effect of NiTi orthopedic materials by chitosan and gold nanoparticles, *Applied Surface Science* 292 (2014) 390-399 DOI:.

[116] A. Escobar, N. Muzzio, S.E. Moya, Antibacterial layer-by-layer coatings for medical implants, *Pharmaceutics* 13(1) (2021) 16 DOI:.

[117] P. Shafiee, M. Reisi Nafchi, S. Eskandarinezhad, S. Mahmoudi, E. Ahmadi, Sol-gel zinc oxide nanoparticles: advances in synthesis and applications, *Synthesis and Sintering* 1(4) (2021) 242-254 DOI:.

[118] Y. Huang, X. Zhang, R. Zhao, H. Mao, Y. Yan, X. Pang, Antibacterial efficacy, corrosion resistance, and cytotoxicity studies of copper-substituted carbonated hydroxyapatite coating on titanium substrate, *Journal of Materials Science* 50(4) (2015) 1688-1700.

[119] M. Barekat, R.S. Razavi, F. Sharifianjazi, Synthesis and the surface resistivity of carbon black pigment on black silicone thermal control coating, *Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry* 45(4) (2015) 502-506.

[120] Q. Feng, F. Cui, T. Kim, J. Kim, Ag-substituted hydroxyapatite coatings with both antimicrobial effects and biocompatibility, *Journal of materials science letters*

[18(7) (1999) 559-561.]

[121] Z. Geng, Z. Cui, Z. Li, S. Zhu, Y. Liang, Y. Liu, X. Li, X. He, X. Yu, R. Wang, Strontium incorporation to optimize the antibacterial and biological characteristics of silver-substituted hydroxyapatite coating, *Materials Science and Engineering: C* 58 (2016) 467-477.

[122] Y. Huang, M. Hao, X. Nian, H. Qiao, X. Zhang, X. Zhang, G. Song, J. Guo, X. Pang, H. Zhang, Strontium and copper co-substituted hydroxyapatite-based coatings with improved antibacterial activity and cytocompatibility fabricated by electrodeposition, *Ceramics International* 42(10) (2016) 11876-11888.

[123] B. Hidalgo-Robatto, M. López-Álvarez, A. Azevedo, J. Dorado, J. Serra, N. Azevedo, P. González, Pulsed laser deposition of copper and zinc doped hydroxyapatite coatings for biomedical applications, *Surface and Coatings Technology* 333 (2018) 168-177.

[124] M.R. Nafchi, R. Ebrahimi-kahrizsangi, Synthesis of Zn-Co-TiO₂ nanocomposite coatings by electrodeposition with photocatalytic and antifungal activities, *Journal of Composites and Compounds* 3(9) (2021) 213-217.

[125] X.-J. Ji, L. Gao, J.-C. Liu, J. Wang, Q. Cheng, J.-P. Li, S.-Q. Li, K.-Q. Zhi, R.-C. Zeng, Z.-L. Wang, Corrosion resistance and antibacterial properties of hydroxyapatite coating induced by gentamicin-loaded polymeric multilayers on magnesium alloys, *Colloids and Surfaces B: Biointerfaces* 179 (2019) 429-436.

[126] M. Stevanovic, M. Došić, A. Jankovic, V. Kojic, M. Vukasinovic-Sekulic, J. Stojanovic, J. Odovic, M. Crevar Sakač, K.Y. Rhee, V. Miskovic-Stankovic, Gentamicin-loaded bioactive hydroxyapatite/chitosan composite coating electrodeposited on titanium, *ACS Biomaterials Science & Engineering* 4(12) (2018) 3994-4007.

[127] R.S. Virk, M.A.U. Rehman, M.A. Munawar, D.W. Schubert, W.H. Goldmann, J. Dusza, A.R. Boccaccini, Curcumin-containing orthopedic implant coatings deposited on poly-ether-ether-ketone/bioactive glass/hexagonal boron nitride layers by electrophoretic deposition, *Coatings* 9(9) (2019) 572.

[128] M.A. Akhtar, C.E. Mariotti, B. Conti, A.R. Boccaccini, Electrophoretic deposition of ferulic acid loaded bioactive glass/chitosan as antibacterial and bioactive composite coatings, *Surface and Coatings Technology* 405 (2021) 126657.

[129] K. Schuhladen, J.A. Roether, A.R. Boccaccini, Bioactive glasses meet phytotherapeutics: the potential of natural herbal medicines to extend the functionality of bioactive glasses, *Biomaterials* 217 (2019) 119288.

[130] V. Zarghami, M. Ghorbani, K.P. Bagheri, M.A. Shokrgozar, Prolongation of bactericidal efficiency of chitosan—Bioactive glass coating by drug controlled release, *Progress in Organic Coatings* 139 (2020) 105440.

[131] J. Raphael, M. Holodniy, S.B. Goodman, S.C. Heilshorn, Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants, *Biomaterials* 84 (2016) 301-314.

[132] V. Antoci Jr, C.S. Adams, J. Parvizi, P. Ducheyne, I.M. Shapiro, N.J. Hickok, Covalently attached vancomycin provides a nanoscale antibacterial surface, *Clinical Orthopaedics and Related Research (1976-2007)* 461 (2007) 81-87.

[133] T. Tamanna, C.B. Landersdorfer, H.J. Ng, J.B. Bulitta, P. Wood, A. Yu, Prolonged and continuous antibacterial and anti-biofilm activities of thin films embedded with gentamicin-loaded mesoporous silica nanoparticles, *Applied Nanoscience* 8(6) (2018) 1471-1482.

[134] N.S. Radda'a, W.H. Goldmann, R. Detsch, J.A. Roether, L. Cordero-Arias, S. Virtanen, T. Moskalewicz, A.R. Boccaccini, Electrophoretic deposition of tetracycline hydrochloride loaded halloysite nanotubes chitosan/bioactive glass composite coatings for orthopedic implants, *Surface and Coatings Technology* 327 (2017) 146-157.

[135] V. Grumezescu, I. Negut, O. Gherasim, A.C. Birca, A.M. Grumezescu, A. Hudita, B. Galateanu, M. Costache, E. Andronescu, A.M. Holban, Antimicrobial applications of MAPLE processed coatings based on PLGA and lincomycin functionalized magnetite nanoparticles, *Applied Surface Science* 484 (2019) 587-599.

[136] W.-t. Lin, H.-l. Tan, Z.-l. Duan, B. Yue, R. Ma, G. He, T.-t. Tang, Inhibited bacterial biofilm formation and improved osteogenic activity on gentamicin-loaded titania nanotubes with various diameters, *International journal of nanomedicine* 9 (2014) 1215.

[137] S. Radin, J.T. Campbell, P. Ducheyne, J.M. Cuckler, Calcium phosphate ceramic coatings as carriers of vancomycin, *Biomaterials* 18(11) (1997) 777-782.

[138] H. Zhang, Y. Sun, A. Tian, X.X. Xue, L. Wang, A. Alquhalil, X. Bai, Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO₂ nanotubes: in vivo and in vitro studies, *International Journal of Nanomedicine* 8 (2013) 4379.

[139] V. Antoci Jr, C.S. Adams, J. Parvizi, H.M. Davidson, R.J. Composto, T.A. Freeman, E. Wickstrom, P. Ducheyne, D. Jungkind, I.M. Shapiro, The inhibition of *Staphylococcus epidermidis* biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection, *Biomaterials* 29(35) (2008) 4684-4690.

[140] M. Lucke, G. Schmidmaier, S. Sadoni, B. Wildemann, R. Schiller, N. Haas, M. Raschke, Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats, *Bone* 32(5) (2003) 521-531.

[141] Y. Yang, H.-y. Ao, S.-b. Yang, Y.-g. Wang, W.-t. Lin, Z.-f. Yu, T.-t. Tang, In vivo evaluation of the anti-infection potential of gentamicin-loaded nanotubes on titania implants, *International Journal of Nanomedicine* 11 (2016) 2223.

[142] T. Aydemir, L. Liverani, J.I. Pastore, S.M. Ceré, W.H. Goldmann, A.R. Boccaccini, J. Ballarre, Functional behavior of chitosan/gelatin/silica-gentamicin coatings by electrophoretic deposition on surgical grade stainless steel, *Materials Science and Engineering: C* 115 (2020) 111062.

[143] J. Sun, X. Liu, C. Lyu, Y. Hu, D. Zou, Y.-S. He, J. Lu, Synergistic antibacterial effect of graphene-coated titanium loaded with levofloxacin, *Colloids and Surfaces B: Biointerfaces* 208 (2021) 112090.

[144] A. Bigham, A. Saudi, M. Rafenia, S. Rahmati, H. Bakhtiyari, F. Salahshouri, M. Sattary, S. Hassanzadeh-Tabrizi, Electrophoretically deposited mesoporous magnesium silicate with ordered nanopores as an antibiotic-loaded coating on surface-modified titanium, *Materials Science and Engineering: C* 96 (2019) 765-775.

[145] S.E. Gilchrist, D. Lange, K. Letchford, H. Bach, L. Fazli, H.M. Burt, Fusidic acid and rifampicin co-loaded PLGA nanofibers for the prevention of orthopedic implant associated infections, *Journal of controlled release* 170(1) (2013) 64-73.

[146] J. Peyre, V. Humblot, C. Méthivier, J.-M. Berjeaud, C.-M. Pradier, Co-grafting of amino-poly(ethylene glycol) and magainin I on a TiO₂ surface: tests of antifouling and antibacterial activities, *The Journal of Physical Chemistry B* 116(47) (2012) 13839-13847.

[147] M. Charnley, M. Textor, C. Acikgoz, Designed polymer structures with anti-fouling-antimicrobial properties, *Reactive and Functional Polymers* 71(3) (2011) 329-334.

[148] G. Cheng, H. Xue, Z. Zhang, S. Chen, S. Jiang, A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities, *Angewandte Chemie* 120(46) (2008) 8963-8966.

[149] J. Hardes, C. Von Eiff, A. Streitbürger, M. Balke, T. Budny, M.P. Henrichs, G. Hauschild, H.J.J.o.s.o. Ahrens, Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma, 101(5) (2010) 389-395.

[150] H. Wafa, R. Grimer, K. Reddy, L. Jeys, A. Abudu, S. Carter, R.J.T.b. Tillman, j. journal, Retrospective evaluation of the incidence of early periprosthetic infection with silver-treated endoprostheses in high-risk patients: case-control study, 97(2) (2015) 252-257.

[151] H. Tsuchiya, T. Shirai, H. Nishida, H. Murakami, T. Kabata, N. Yamamoto, K. Watanabe, J.J.J.o.O.S. Nakase, Innovative antimicrobial coating of titanium implants with iodine, 17(5) (2012) 595-604.

[152] T. Shirai, H. Tsuchiya, H. Nishida, N. Yamamoto, K. Watanabe, J. Nakase, R. Terauchi, Y. Arai, H. Fujiwara, T.J.J.o.B.A. Kubo, Antimicrobial megaprostheses supported with iodine, 29(4) (2014) 617-623.

[153] K. Malizos, M. Blauth, A. Danita, N. Capuano, R. Mezzoprete, N. Logoluso, L. Drago, C.L.J.J.o.O. Romano, Traumatology, Fast-resorbable antibiotic-loaded hydrogel coating to reduce post-surgical infection after internal osteosynthesis: a multicenter randomized controlled trial, 18(2) (2017) 159-169.

[154] C. Mas-Moruno, B. Su, M.J. Dalby, Multifunctional coatings and nanotopographies: toward cell instructive and antibacterial implants, *Advanced healthcare materials* 8(1) (2019) 1801103 DOI:.

[155] Z. Shi, K.G. Neoh, E.-T. Kang, C. Poh, W. Wang, Titanium with surface-grafted dextran and immobilized bone morphogenetic protein-2 for inhibition of bacterial adhesion and enhancement of osteoblast functions, *Tissue Engineering Part A* 15(2) (2009) 417-426 DOI:.

[156] X. Hu, K.-G. Neoh, Z. Shi, E.-T. Kang, C. Poh, W. Wang, An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion, *Biomaterials* 31(34) (2010) 8854-8863.

[157] Z. Shi, K. Neoh, E. Kang, C.K. Poh, W. Wang, Surface functionalization of titanium with carboxymethyl chitosan and immobilized bone morphogenetic protein-2 for enhanced osseointegration, *Biomacromolecules* 10(6) (2009) 1603-1611.

[158] L. Zhao, H. Wang, K. Huo, L. Cui, W. Zhang, H. Ni, Y. Zhang, Z. Wu, P.K. Chu, Antibacterial nano-structured titania coating incorporated with silver nanoparticles, *Biomaterials* 32(24) (2011) 5706-5716.

[159] Z. Wang, K. Wang, X. Lu, C. Li, L. Han, C. Xie, Y. Liu, S. Qu, G. Zhen, Nanostructured Architectures by Assembling Polysaccharide-Coated BSA Nanoparticles for Biomedical Application, *Advanced Healthcare Materials* 4(6) (2015) 927-937.

[160] E. Yüksel, A. Karakeçili, T.T. Demirtaş, M. Gümüşderelioğlu, Preparation of bioactive and antimicrobial PLGA membranes by magainin II/EGF functionalization, *International journal of biological macromolecules* 86 (2016) 162-168.

[161] Q. Yu, J. Cho, P. Shivapooja, L.K. Ista, G.P. López, Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria, *ACS*

applied materials & interfaces 5(19) (2013) 9295-9304.