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1. Introduction

Helical springs are widely used in engineering applications. The 
numerical modeling of the helical springs is of particular importance, 
due to their nonlinear and complex behavior. The helical spring ex-
hibits a coupled extensional-rotational deformation and is a nonlinear 
mechanical element [1]. A wide variety of complex vibration problems 
of the helical springs are reported in the literature. Banerjee et al. [2] 
solved the free vibration analysis of helical springs to obtain the dy-
namic stiffness of these springs. Lee et al. [3] investigated the governing 
equations of helical cylindrical springs based on the Timoshenko beam 
theory in a curvilinear coordinate system. Temel et al. [4] investigated 
the forced vibration of helical cylindrical rods under impulsive loads 
in the frequency domain. Using the continuity approach, Howson et al. 
[5] obtained natural frequencies for the coupled tensile-rotational move-
ment of the springs and the coupled deformation of the composite rods. 
Leamy [6] investigated the forced vibrations of helical springs using the 
finite element method. Champion et al. [7] modeled deviations from the 
linear spring model for vertically suspended springs. Michalczyk [8] has 
investigated the effect of using damping coatings on the spring, its vi-
bration, and resonance. He showed that if the entire surface of the spring 
were covered with the above coatings, the natural first frequency of the 
spring would be reduced. Yengejeh et al. [9] have simulated vibration 
and buckling behavior of the helical carbon nanotubes using a finite el-
ement method. Vebil [10] proposed a closed-form formula for a closed 
and open cylindrical spring using an artificial neural network. Crescenzo 
et al. [11] investigated the two-dimensional buckling behavior of uni-

form helical springs using lumped stiffness. Kacar et al. [12] utilized 
the stiffness matrices to obtain natural frequencies and buckling loads 
of non-uniform helical springs made of composite materials, based on 
first-order shear deformation theory. A geometrically exact beam theory 
is applied to model the dynamics of helical springs by Zhang et al. [13]. 
In another study, Michalczyk et al. [14] presented a simple formula for 
calculating the natural frequency of transverse vibrations of axial steel 
helical springs using a modified equivalent Timoshenko beam theory. 
They have determined a critical axial force, when the first natural fre-
quency becomes zero. 

FG materials exhibit different properties in different regions of the 
material due to the gradual change of chemical composition, distribu-
tion, and orientation or size of the constituent phases in one or more 
dimensions. This gradual change of the structure and properties has led 
to the extensive use of these materials such as biomedical, aerospace, 
defense, energy, automobiles, marine, constructions, and so on [15]. The 
nonlinear vibration problems of complete and incomplete FG cylindri-
cal shells with elastic bases have been studied in the literature using 
the classical shell theory and with Galerkin and harmonic equilibrium 
superposition [16, 17]. Dung et al. [18] solved the post-buckling prob-
lem of reinforced FG cylindrical shells under axial-compressive loads 
and on elastic foundations using the classical shell theory. Anh et al. 
[19] studied the nonlinear vibration and dynamic response of stiffened 
FG cylindrical shells on elastic foundations in thermal environments. 
Recently, Liu et al. presented a numerical model to predict compressive 
behavior of composite helical springs [20]. They have obtained more 
accurate results by including geometrical nonlinearity into their model.
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Helical springs are important mechanical elements due to their wide-
spread use [21]. From the above discussed literature, it is established 
that FG materials have removed considerable restrictions in many in-
dustries. Therefore, the FG helical springs can be used efficiently in en-
gineering applications. On the other hand, aluminum based metal FG 
materials are very popular due to their high strength to weight ratio and 
good resistance [22]. A common non-metallic reinforcement phase em-
bedded in this composite is silicon carbide (SiC) [23]. The presented 
research investigates the dynamics response and free vibration of the Al-
SiC functionally graded helical springs using a coupled axial-torsional 
model. The coupled axial-torsional vibration of a homogeneous helical 
spring is first proposed by Jiang et al. [1]. This model is extended to free 
vibration of the Al-SiC functionally graded helical spring in this paper. 
The dynamic behavior and the time histories of the axial and rotational 
displacements are evaluated. The equations are discretized using finite 
difference method for space and the time dependent equations are solved 
using a GMRES method [24]. 

According to the authors knowledge, no work has been reported on 
free vibration analysis of the FG helical springs. In most of the men-
tioned literature, the dynamic response of the homogeneous helical 
spring is established. Therefore, this paper aims to address the dynamic 
behavior and free vibration of the FG helical springs as truly as possible. 

2. Materials and Methods

2.1 Helical spring equations of motion

If no distributed load is applied on the helical spring, it can be de-
formed to another helical spring under the axial force F and the torsional 
moment M. This exerts equal torsion at both ends of the spring [1]. Fig-
ure 1 shows the helical spring under force and moment. In this case, the 
non-zero internal moment and forces are constant along the centerline 
of the spring.

The force-strain relation is expressed as Eq. (1),

3 4M = k kε + ϕ  1 2F = k kε + ϕ                                     	   (1)

In the above relations, ε and φ are axial and rotational strains, respec-
tively. According to Ref. [1], the stiffness constants of the spring can be 
written as Eq. (2),
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where r is the radius of the spring coil, R is radius of the spring wire, 
k is the tangent of helical angle, E is the elasticity module, and υ is the 
poison’s ratio. The parameter Δ is given in Eq. (3), 

2 2
2 2 2

22

1 k R4(1 )(1 k ) ((1 ) k (1 ))
rk 1 k

 
∆ = + ν + + − ν + + ν 

+  
  	   (3)

According to linear force-strain relations (Eq. 1 and Eq. 2), the gov-
erning equations for small displacements of the spring are obtained as 
Eq. (4),
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where u(x, t) is the axial displacement, (x, t)θ is the rotational dis-
placement of the spring, γ is the mass per unit length and μ is the mass 
moment of inertia per unit length of the spring.

2.2 Helical spring free vibrations

To investigate the free vibration of the cylindrical helical spring, one 
end of the spring is considered to be fixed at x=0, and the other end is 
free at x=L0. L0 is the free length of the spring. The initial displacement 
and rotation, u0 and θ0, are applied at the free end of the spring. These 
initial displacements are dropped suddenly at the beginning of the mo-
tion at t=0, and the helical spring vibrates freely. The initial and bound-
ary conditions of the problem are given in Eq. (5),
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Fig. 2. Analytical and numerical axial displacement (a) and rotational displace-
ment (b) versus position along homogeneous spring length at t=0.001.

Fig. 1. Schematic of a cylindrical helical spring with applied force and moment.
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Regarding the coupled behavior of the cylindrical helical springs, the 
relationship 0 3 2 0k / k uθ = − exists between the initial displacements. 
The discretization of the system governing equations is the first step of 
solving them. Since the equations are second order in time, three consec-
utive time steps are required. Eq. (4) is rewritten in Eq. (6) by defining 
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The resulting equations are first order in time. A central difference 
scheme is used for spatial discretization. The computational domain is 
one-dimensional with IN nodes along the spring helix centerline. For 

solving the discretized system of equations, a GMRES method [24] is 

used in each time step. 
In this study, the cylindrical helical FG spring is composed of the 

silicon-carbide ceramic and aluminum (Al-SiC). The spring module of 
elasticity, density and poison’s ratio varies gradually along the spring 
centerline. The mechanical properties in each point are defined using a 
power law function as related in Eq. (7).
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where n is the gradient index and 0 0 tL L / 2 RN= π . L(x) is the 

Fig. 3. Analytical and numerical axial displacement (a) and rotation (b) versus 
time at x=L/2. Fig. 5. Time histories of axial (a) and rotational (b) displacements at x=L/4, L/2 

and, 3L/4 for homogeneous helical spring.

Fig. 6. FFT diagram of oscillation amplitude versus frequency for axial displace-
ment (a) and rotation (b) of a homogeneous helical steel.

Fig. 4. Axial displacement (a) and rotational displacement (b) at x=L/2 for 
different number of nodes.



Z. Ebrahimi et al. / Journal of Composites and Compounds 3 (2021) 176-181 179

spring length, which can be written as, t 0L(x) 2 RN x / L= π . The to-
tal number of spring coils is presented with Nt.

3. Results and Discussions

3.1 Homogeneous helical spring Model

First, the numerical results are compared with the analytical formula 
of Ref. [1] to verify the numerical procedure. Therefore, a cylindrical 
helical spring made of steel with E=200 GPa, ν=0.29, and ρ= 7600 (kg/
m3) is considered for model validation. The geometrical parameters 
are R=0.01 m, r=0.1 m, α=π/6, where α is the spring helical angle. The 
spring free length and the number of spring coils are L0=0.2 m and Nt=6, 
respectively. The initial axial and rotational displacements applied at the 
free end of the spring, are u0=0.01 m and θ0=-(k3/k2)u0, respectively. The 
initial displacements are dropped suddenly at t=0 and the spring begins 
to vibrate. 

The analytical formula for the axial-torsional coupled motion of the 
helical springs proposed by Jiang et al. [1] are implemented in a Matlab 
code and the results are compared with those of the presented numerical 
model. As stated before, in the presented numerical model the time de-
pendent discretized model equations are solved using GMRES method. 
The analytical and numerical axial and rotational displacements versus 
position are shown in Figure 2 and Figure 3, for homogeneous spring at 
t=0.001 s. An excellent agreement is obtained between numerical and 
analytical results.

A grid study is performed to find an optimized number of computa-

tional nodes. The results are illustrated in Figure 4. The axial and rota-
tional displacements are plotted at the middle of the spring for k=11, 51, 
101, and 201, where k is the number of nodes in the computational do-
main. As it can be seen, by using a finer grid, i.e., increasing the number 
of nodes, the results converge to the analytical values. The convergence 
is obtained for k≥51. Therefore an optimum value of k=51 is used for 
further simulations. 

The fixed end of the spring is placed at x=0. Therefore, the ampli-
tudes of axial and rotational oscillations will increase as x approaches to 
the free end of the spring. However, to establish the increasing of these 
amplitudes more accurately, the temporal evolutions of the axial dis-
placements at x=L/4, L/2, and 3L/4 are presented in Figure 5 (a). Time 
histories of rotational displacements at the same positions are also pre-
sented in Figure 5 (b). As shown in Figure 5 (a), the axial displacement 
of the spring versus time is periodic with sine waves. The amplitudes of 
the oscillations at x=L/4, L/2, and 3L/4 are different, but the general be-
havior of these oscillations is the same. Moreover, the amplitudes of the 
oscillations become larger by approaching the free end of the spring. The 
amplitude of the oscillation at x=3L/4 is greater than x= L/4 and L/2. 

According to Figure 5 (b), the general behavior of rotational dis-
placement oscillations is the same for all three positions. The number 
and period of cycles in a given time interval are the same as well. How-
ever, the amplitudes of the rotational displacement oscillations are dif-
ferent at these three points. The closer one gets to the free end of the 
spring, the more the rotational displacement increases.

Main frequencies of the homogeneous helical spring are obtained by 
Fast Fourier Transformation (FFT). The FFT is often utilized to identify 
the nonlinear structural elements in frequency domain analysis [25]. The 

Fig. 7. Time histories of axial displacement at x=L/4, L/2 and, 3L/4 for the FG 
helical spring with n=0 (a), n=0.25 (b) and n=0.5 (c).

Fig. 8. Time histories of rotational displacement at x=L/4, L/2 and, 3L/4 for the 
FG helical spring with n=0 (a), n=0.25 (b) and n=0.5 (c).
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oscillation amplitudes for FFT of axial displacement and rotation versus 
their motion frequencies are shown in Figure 6 (a) and 6 (b), respective-
ly. Two maximum frequencies are observed in these figures, which are 
the first and second main frequencies. For the axial displacement, the 
main frequencies are 460 and 400 Hz. The related amplitude of these 
oscillations are 0.0041 and 0.001 m, respectively. For the rotational dis-
placement, the main frequencies are 460 and 400 Hz with amplitudes of 
0.0255 and 0.0151 m. 

3.2 FG helical spring Model

Next, the FG cylindrical helical spring model is considered. Table 1 
presents the mechanical properties of the FG material. The fixed end of 
the spring is SiC ceramic, and the free end of the spring is aluminum. 
The mechanical properties change gradually along the spring length, 
L(x). Geometrical parameters are the same as the previous simulation.

The initial displacements u0=0.01 m and θ0=-(k3/k2)u0, are removed 
suddenly at t=0 and the spring free vibration starts. Since E, ν, and ρ are 
functions of x, the spring coefficients k3 and k4 are position-dependent, 
as well. Therefore, θ0 is not constant. The discretized equations are eval-
uated in each computational node. The time step of 10-6

 is used. The sys-
tem of discretized equations is solved by applying the GMRES method 
in MATLAB programming software. The effects of the gradient index 
of FG material on free vibration of the FG helical spring are studied. 

Three gradient index values n =0, n=0.25, and n=0.5 are considered. 
As related in Eq. 1 to Eq. 3, the zero gradient index results in a ho-
mogeneous helical spring. Figure 7 shows the time histories of axial 

displacement of the FG spring at x=L/4, L/2, and 3L/4. The shape of 
axial displacement is different for three values of the gradient index. The 
oscillation period and amplitude are not the same for different values of 
the gradient index. For the FG helical spring with n=0.25 and n=0.5, as 
shown in Figure 7 (b) and (c), the amplitudes decrease as time evolves 
and, the vibration is damped after passing some time. However, the am-
plitudes remain constant for n=0.0 within the same time interval as illus-
trated in Figure 7 (a). The oscillation period for n=0.25 is greater than 
that of n=0 and n=0.5. Therefore, the time interval for this simulation 
is 0.1 s to illustrate the dynamic behavior and decreasing trend of the 
oscillation amplitudes for n=0.25, more accurately.

The rotational displacement of the FG helical spring is presented 
in Figure 8. For n=0, the material is homogeneous. By increasing the 
gradient index, the oscillation behavior of the rotational displacements 
changes. The maximum value of these oscillations is constant for n=0 
and decreases gradually for n=0.25 and n=0.5. The variation of the os-
cillation period is observed for the rotational displacements as well. The 
oscillation period has the biggest value for n=0.25, hence the time inter-
val is set to 0.1 s for this simulation. 

Decreasing of the oscillation amplitudes is observed only for the FG 
helical springs. Following the trends of the oscillation amplitudes for 
n=0.5, complete damping of the oscillation will occur after 0.15 s. For 
n=0.25, the time required for complete damping of the oscillations is 
0.25 s. 

The main frequencies of the FG helical spring and their related oscil-
lation amplitudes versus gradient index are evaluated by FFT analysis. 
The oscillation amplitudes for FFT of the axial and rotational displace-
ments versus their motion frequencies are shown in Figures 9 (a) and 9 
(b), respectively. For each FFT analysis, two maximum frequencies are 
observed, which are the first and second main frequencies. The main 
frequency values and their related amplitudes are summarized in Table 2 
for three gradient index values, i.e., n=0, 0.25, 0.5.

The results of Table 2 show that the main frequencies of the free 
vibration of the FG helical spring are increased with increasing the gra-
dient index from 0 to 0.5. According to the presented results, the ampli-
tude of axial and rotational displacements of the FG helical spring with 
n = 0.25 are less than those of homogeneous helical spring, which have 
been reported by Jiang et al [1]. The rotational displacement amplitudes 
of the FG helical spring with n=0.5 are less than those of the homo-
geneous helical spring. On the other hand, the rotational displacement 
amplitude corresponding to the first and second frequencies of the FG 
helical spring with n=0.5 is greater than the rotational displacement am-
plitude corresponding to the first frequency and less than the rotation-
al amplitude corresponding to the second frequency of the FG helical 
spring with n=0.25. The axial displacement amplitude corresponding to 
the first frequency of the FG helical spring with n=0.5 is less than those 
of the homogeneous spring and those of the FG spring with n=0.25. 
However, the amplitudes of the displacement corresponding to the sec-
ond frequency for the FG helical spring with n=0.5 are more significant 
than those of the homogeneous helical spring and those of the FG helical 
spring with n=0.25.

4. Conclusion

In this study, the free vibration of a functionally graded cylindrical 
helical spring has been investigated. The analytical formula for the axi-
al-torsional coupled motion of the helical spring proposed by Jiang et al. 
[1] has been used for model validation. An excellent agreement has been 
obtained between numerical and analytical results, which indicates the 
high efficiency of the presented numerical model. The effects of the FG 
material index on dynamic behavior of the Al-SiC functionally graded 
helical spring have been investigated. 

Fig. 9. FFT diagram of oscillation amplitude versus frequency for axial displace-
ment (a) and rotational displacement (b) of the FG helical spring.

Table 1.
Mechanical properties of the FG material

ValueProperty

70×109EAl (Pa)

0.3νAl

2702ρAl (kg/m3)

427×109ESiC (Pa)

0.17νSiC

3100ρSiC (kg/m3)
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The numerical results of the presented model indicate that FG ma-
terial index strongly affects the dynamic behavior of the cylindrical he-
lical springs. The oscillation period, oscillation amplitudes and model 
natural frequencies have been changed by gradient index variation. With 
increasing the gradient index, the vibrational oscillations were damped 
faster. This study has discovered that the application of FG materials in 
design of helical springs increases the damping capacity and vibration 
resistance of these structures. The proposed numerical model can be 
extended to non-cylindrical springs and has provided insights into the 
optimal design of helical structures in engineering applications. 
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