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manually and then released. The validated numerical model is then adopted to establish the effects of the FG

material index on the model natural frequencies obtained by FFT analysis. According to the results, in both ho- Keywords:

mogeneous and FG helical springs, the amplitudes of axial and rotational displacements increase as they approach FG material

the free end of the spring. The numerical results indicate that the FG material index strongly affects the dynamic Helical spring

behavior of the cylindrical helical springs. The amplitudes of the oscillations are damped efficiently and by in- Axial and rotational displacement

creasing the material gradient index. ©2021 JCC Research Group.
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1. Introduction

Helical springs are widely used in engineering applications. The
numerical modeling of the helical springs is of particular importance,
due to their nonlinear and complex behavior. The helical spring ex-
hibits a coupled extensional-rotational deformation and is a nonlinear
mechanical element [1]. A wide variety of complex vibration problems
of the helical springs are reported in the literature. Banerjee et al. [2]
solved the free vibration analysis of helical springs to obtain the dy-
namic stiffness of these springs. Lee et al. [3] investigated the governing
equations of helical cylindrical springs based on the Timoshenko beam
theory in a curvilinear coordinate system. Temel et al. [4] investigated
the forced vibration of helical cylindrical rods under impulsive loads
in the frequency domain. Using the continuity approach, Howson et al.
[5] obtained natural frequencies for the coupled tensile-rotational move-
ment of the springs and the coupled deformation of the composite rods.
Leamy [6] investigated the forced vibrations of helical springs using the
finite element method. Champion et al. [7] modeled deviations from the
linear spring model for vertically suspended springs. Michalczyk [8] has
investigated the effect of using damping coatings on the spring, its vi-
bration, and resonance. He showed that if the entire surface of the spring
were covered with the above coatings, the natural first frequency of the
spring would be reduced. Yengejeh et al. [9] have simulated vibration
and buckling behavior of the helical carbon nanotubes using a finite el-
ement method. Vebil [10] proposed a closed-form formula for a closed
and open cylindrical spring using an artificial neural network. Crescenzo

et al. [11] investigated the two-dimensional buckling behavior of uni-
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form helical springs using lumped stiffness. Kacar et al. [12] utilized
the stiffness matrices to obtain natural frequencies and buckling loads
of non-uniform helical springs made of composite materials, based on
first-order shear deformation theory. A geometrically exact beam theory
is applied to model the dynamics of helical springs by Zhang et al. [13].
In another study, Michalczyk et al. [14] presented a simple formula for
calculating the natural frequency of transverse vibrations of axial steel
helical springs using a modified equivalent Timoshenko beam theory.
They have determined a critical axial force, when the first natural fre-
quency becomes zero.

FG materials exhibit different properties in different regions of the
material due to the gradual change of chemical composition, distribu-
tion, and orientation or size of the constituent phases in one or more
dimensions. This gradual change of the structure and properties has led
to the extensive use of these materials such as biomedical, aerospace,
defense, energy, automobiles, marine, constructions, and so on [15]. The
nonlinear vibration problems of complete and incomplete FG cylindri-
cal shells with elastic bases have been studied in the literature using
the classical shell theory and with Galerkin and harmonic equilibrium
superposition [16, 17]. Dung et al. [18] solved the post-buckling prob-
lem of reinforced FG cylindrical shells under axial-compressive loads
and on elastic foundations using the classical shell theory. Anh et al.
[19] studied the nonlinear vibration and dynamic response of stiffened
FG cylindrical shells on elastic foundations in thermal environments.
Recently, Liu et al. presented a numerical model to predict compressive
behavior of composite helical springs [20]. They have obtained more
accurate results by including geometrical nonlinearity into their model.
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Fig. 1. Schematic of a cylindrical helical spring with applied force and moment.

Helical springs are important mechanical elements due to their wide-
spread use [21]. From the above discussed literature, it is established
that FG materials have removed considerable restrictions in many in-
dustries. Therefore, the FG helical springs can be used efficiently in en-
gineering applications. On the other hand, aluminum based metal FG
materials are very popular due to their high strength to weight ratio and
good resistance [22]. A common non-metallic reinforcement phase em-
bedded in this composite is silicon carbide (SiC) [23]. The presented
research investigates the dynamics response and free vibration of the Al-
SiC functionally graded helical springs using a coupled axial-torsional
model. The coupled axial-torsional vibration of a homogeneous helical
spring is first proposed by Jiang et al. [1]. This model is extended to free
vibration of the Al-SiC functionally graded helical spring in this paper.
The dynamic behavior and the time histories of the axial and rotational
displacements are evaluated. The equations are discretized using finite
difference method for space and the time dependent equations are solved
using a GMRES method [24].

According to the authors knowledge, no work has been reported on
free vibration analysis of the FG helical springs. In most of the men-
tioned literature, the dynamic response of the homogeneous helical
spring is established. Therefore, this paper aims to address the dynamic

behavior and free vibration of the FG helical springs as truly as possible.

2. Materials and Methods
2.1 Helical spring equations of motion

If no distributed load is applied on the helical spring, it can be de-
formed to another helical spring under the axial force F and the torsional
moment M. This exerts equal torsion at both ends of the spring [1]. Fig-
ure 1 shows the helical spring under force and moment. In this case, the
non-zero internal moment and forces are constant along the centerline
of the spring.

The force-strain relation is expressed as Eq. (1),

M=k,e+k,0 F=ke+k,p o
In the above relations, € and ¢ are axial and rotational strains, respec-

tively. According to Ref. [1], the stiffness constants of the spring can be
written as Eq. (2),

nER* nvERk
k, = 1+k2(1+v)),k, = =
1= A ( 1+v)).k, A

nER*k R’
k,=- 4v+—), (2)
3 4rA ( rz)

nER* k’R?
k, = A1+v+k7)+
T TIA (4( ) = )

<10° 3
0 : .
— @ — analytical
-1 (a) numerical
2
Eh
Nty
=]
5
-6
7
0 0.02 0.04 0.06 0.08 0.1
X (m)
) %10
— @ —analytical
numerica (b)

o

0 (rad)

6 o9
0 0.02 0.04 0.06 0.08 0.1
X (m)

Fig. 2. Analytical and numerical axial displacement (a) and rotational displace-
ment (b) versus position along homogeneous spring length at t=0.001.

where r is the radius of the spring coil, R is radius of the spring wire,
k is the tangent of helical angle, E is the elasticity module, and v is the
poison’s ratio. The parameter A is given in Eq. (3),

A= ﬁ[m +V)(1+k>) + g((l —V)+k(1+ v))J ?3)

According to linear force-strain relations (Eq. 1 and Eq. 2), the gov-
erning equations for small displacements of the spring are obtained as
Eq. (4),

o’u 0’0 o’u
ot T
u . 90 90 (&)
Ko e T

where u(x,t)is the axial displacement, 6(x, t) is the rotational dis-
placement of the spring, v is the mass per unit length and p is the mass
moment of inertia per unit length of the spring.

2.2 Helical spring free vibrations

To investigate the free vibration of the cylindrical helical spring, one
end of the spring is considered to be fixed at x=0, and the other end is
free at x=L . L is the free length of the spring. The initial displacement
and rotation, u, and 0, are applied at the free end of the spring. These
initial displacements are dropped suddenly at the beginning of the mo-
tion at t=0, and the helical spring vibrates freely. The initial and bound-
ary conditions of the problem are given in Eq. (5),
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Fig. 3. Analytical and numerical axial displacement (a) and rotation (b) versus
time at x=L/2.
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Fig. 4. Axial displacement (a) and rotational displacement (b) at x=L/2 for

different number of nodes.

Regarding the coupled behavior of the cylindrical helical springs, the
relationship 0, = —k, /k,u, exists between the initial displacements.
The discretization of the system governing equations is the first step of
solving them. Since the equations are second order in time, three consec-
utive time steps are required. Eq. (4) is rewritten in Eq. (6) by defining
ou =Pp,and &) -S>
ot ot
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o e M
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k

The resulting equations are first order in time. A central difference
scheme is used for spatial discretization. The computational domain is
one-dimensional with IN nodes along the spring helix centerline. For

solving the discretized svystem of equations. a GMRES method [24] is
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Fig. 5. Time histories of axial (a) and rotational (b) displacements at x=L/4, L/2

and, 3L/4 for homogeneous helical spring.
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Fig. 6. FFT diagram of oscillation amplitude versus frequency for axial displace-

ment (a) and rotation (b) of a homogeneous helical steel.

used in each time step.

In this study, the cylindrical helical FG spring is composed of the
silicon-carbide ceramic and aluminum (Al-SiC). The spring module of
elasticity, density and poison’s ratio varies gradually along the spring
centerline. The mechanical properties in each point are defined using a
power law function as related in Eq. (7).
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where n is the gradient index and EO =L, /2nRN,. L(x) is the
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Fig. 7. Time histories of axial displacement at x=L/4, L/2 and, 3L/4 for the FG
helical spring with n=0 (a), n=0.25 (b) and n=0.5 (c).

spring length, which can be written as, L(x) =2nRN,x /L, . The to-
tal number of spring coils is presented with N..

3. Results and Discussions
3.1 Homogeneous helical spring Model

First, the numerical results are compared with the analytical formula
of Ref. [1] to verify the numerical procedure. Therefore, a cylindrical
helical spring made of steel with E=200 GPa, v=0.29, and p= 7600 (kg/
m3) is considered for model validation. The geometrical parameters
are R=0.01 m, r=0.1 m, a=n/6, where a is the spring helical angle. The
spring free length and the number of spring coils are L =0.2 m and N =6,
respectively. The initial axial and rotational displacements applied at the
free end of the spring, are u;=0.01 m and 0,=-(k,/k,)u, respectively. The
initial displacements are dropped suddenly at t=0 and the spring begins
to vibrate.

The analytical formula for the axial-torsional coupled motion of the
helical springs proposed by Jiang et al. [1] are implemented in a Matlab
code and the results are compared with those of the presented numerical
model. As stated before, in the presented numerical model the time de-
pendent discretized model equations are solved using GMRES method.
The analytical and numerical axial and rotational displacements versus
position are shown in Figure 2 and Figure 3, for homogeneous spring at
t=0.001 s. An excellent agreement is obtained between numerical and
analytical results.

A grid study is performed to find an optimized number of computa-
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Fig. 8. Time histories of rotational displacement at x=L/4, L/2 and, 3L/4 for the
FG helical spring with n=0 (a), n=0.25 (b) and n=0.5 (c).

tional nodes. The results are illustrated in Figure 4. The axial and rota-
tional displacements are plotted at the middle of the spring for k=11, 51,
101, and 201, where k is the number of nodes in the computational do-
main. As it can be seen, by using a finer grid, i.e., increasing the number
of nodes, the results converge to the analytical values. The convergence
is obtained for k>51. Therefore an optimum value of k=51 is used for
further simulations.

The fixed end of the spring is placed at x=0. Therefore, the ampli-
tudes of axial and rotational oscillations will increase as x approaches to
the free end of the spring. However, to establish the increasing of these
amplitudes more accurately, the temporal evolutions of the axial dis-
placements at x=L/4, L/2, and 3L/4 are presented in Figure 5 (a). Time
histories of rotational displacements at the same positions are also pre-
sented in Figure 5 (b). As shown in Figure 5 (a), the axial displacement
of the spring versus time is periodic with sine waves. The amplitudes of
the oscillations at x=L/4, L/2, and 3L/4 are different, but the general be-
havior of these oscillations is the same. Moreover, the amplitudes of the
oscillations become larger by approaching the free end of the spring. The
amplitude of the oscillation at x=3L/4 is greater than x= L/4 and L/2.

According to Figure 5 (b), the general behavior of rotational dis-
placement oscillations is the same for all three positions. The number
and period of cycles in a given time interval are the same as well. How-
ever, the amplitudes of the rotational displacement oscillations are dif-
ferent at these three points. The closer one gets to the free end of the
spring, the more the rotational displacement increases.

Main frequencies of the homogeneous helical spring are obtained by
Fast Fourier Transformation (FFT). The FFT is often utilized to identify
the nonlinear structural elements in frequency domain analysis [25]. The
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Fig. 9. FFT diagram of oscillation amplitude versus frequency for axial displace-
ment (a) and rotational displacement (b) of the FG helical spring.

oscillation amplitudes for FFT of axial displacement and rotation versus
their motion frequencies are shown in Figure 6 (a) and 6 (b), respective-
ly. Two maximum frequencies are observed in these figures, which are
the first and second main frequencies. For the axial displacement, the
main frequencies are 460 and 400 Hz. The related amplitude of these
oscillations are 0.0041 and 0.001 m, respectively. For the rotational dis-
placement, the main frequencies are 460 and 400 Hz with amplitudes of
0.0255 and 0.0151 m.

3.2 FG helical spring Model

Next, the FG cylindrical helical spring model is considered. Table 1
presents the mechanical properties of the FG material. The fixed end of
the spring is SiC ceramic, and the free end of the spring is aluminum.
The mechanical properties change gradually along the spring length,
L(x). Geometrical parameters are the same as the previous simulation.

The initial displacements u=0.01 m and 6=-(k,/k,)u, are removed
suddenly at t=0 and the spring free vibration starts. Since E, v, and p are
functions of x, the spring coefficients k, and k, are position-dependent,
as well. Therefore, 6 is not constant. The discretized equations are eval-
uated in each computational node. The time step of 10is used. The sys-
tem of discretized equations is solved by applying the GMRES method
in MATLAB programming software. The effects of the gradient index
of FG material on free vibration of the FG helical spring are studied.

Three gradient index values n =0, n=0.25, and n=0.5 are considered.
As related in Eq. 1 to Eq. 3, the zero gradient index results in a ho-
mogeneous helical spring. Figure 7 shows the time histories of axial
Table 1.

Mechanical properties of the FG material

Property Value
E, (Pa) 70x10°
Va 0.3
p,, (kg/m?) 2702
Eg.(Pa) 427x10°
Vgic 0.17
Py (kg/m?) 3100

displacement of the FG spring at x=L/4, L/2, and 3L/4. The shape of
axial displacement is different for three values of the gradient index. The
oscillation period and amplitude are not the same for different values of
the gradient index. For the FG helical spring with n=0.25 and n=0.5, as
shown in Figure 7 (b) and (c), the amplitudes decrease as time evolves
and, the vibration is damped after passing some time. However, the am-
plitudes remain constant for n=0.0 within the same time interval as illus-
trated in Figure 7 (a). The oscillation period for n=0.25 is greater than
that of n=0 and n=0.5. Therefore, the time interval for this simulation
is 0.1 s to illustrate the dynamic behavior and decreasing trend of the
oscillation amplitudes for n=0.25, more accurately.

The rotational displacement of the FG helical spring is presented
in Figure 8. For n=0, the material is homogeneous. By increasing the
gradient index, the oscillation behavior of the rotational displacements
changes. The maximum value of these oscillations is constant for n=0
and decreases gradually for n=0.25 and n=0.5. The variation of the os-
cillation period is observed for the rotational displacements as well. The
oscillation period has the biggest value for n=0.25, hence the time inter-
val is set to 0.1 s for this simulation.

Decreasing of the oscillation amplitudes is observed only for the FG
helical springs. Following the trends of the oscillation amplitudes for
n=0.5, complete damping of the oscillation will occur after 0.15 s. For
n=0.25, the time required for complete damping of the oscillations is
0.25s.

The main frequencies of the FG helical spring and their related oscil-
lation amplitudes versus gradient index are evaluated by FFT analysis.
The oscillation amplitudes for FFT of the axial and rotational displace-
ments versus their motion frequencies are shown in Figures 9 (a) and 9
(b), respectively. For each FFT analysis, two maximum frequencies are
observed, which are the first and second main frequencies. The main
frequency values and their related amplitudes are summarized in Table 2
for three gradient index values, i.e., n=0, 0.25, 0.5.

The results of Table 2 show that the main frequencies of the free
vibration of the FG helical spring are increased with increasing the gra-
dient index from 0 to 0.5. According to the presented results, the ampli-
tude of axial and rotational displacements of the FG helical spring with
n = 0.25 are less than those of homogeneous helical spring, which have
been reported by Jiang et al [1]. The rotational displacement amplitudes
of the FG helical spring with n=0.5 are less than those of the homo-
geneous helical spring. On the other hand, the rotational displacement
amplitude corresponding to the first and second frequencies of the FG
helical spring with n=0.5 is greater than the rotational displacement am-
plitude corresponding to the first frequency and less than the rotation-
al amplitude corresponding to the second frequency of the FG helical
spring with n=0.25. The axial displacement amplitude corresponding to
the first frequency of the FG helical spring with n=0.5 is less than those
of the homogeneous spring and those of the FG spring with n=0.25.
However, the amplitudes of the displacement corresponding to the sec-
ond frequency for the FG helical spring with n=0.5 are more significant
than those of the homogeneous helical spring and those of the FG helical
spring with n=0.25.

4. Conclusion

In this study, the free vibration of a functionally graded cylindrical
helical spring has been investigated. The analytical formula for the axi-
al-torsional coupled motion of the helical spring proposed by Jiang et al.
[1] has been used for model validation. An excellent agreement has been
obtained between numerical and analytical results, which indicates the
high efficiency of the presented numerical model. The effects of the FG
material index on dynamic behavior of the Al-SiC functionally graded
helical spring have been investigated.
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Table 2.

Main frequencies and amplitudes for the vibration of the FG helical spring with different

gradient index values

n=0.0 n=0.25 n=0.5
First Second First Second First Second
frequency  frequency frequency frequency frequency frequency
(Hz) (Hz) (Hz) (Hz) (Hz) (Hz)
480 520 630 650 800 880
Axial dis-
placement
. 0.0039 0.0012 0.0028 0.0009 0.0011 0.0020
amplitude
(m)
Rotational
displace-
ment 0.0238 0.0189 0.0160 0.0171 0.0209 0.0108
amplitude
(rad)

The numerical results of the presented model indicate that FG ma-
terial index strongly affects the dynamic behavior of the cylindrical he-
lical springs. The oscillation period, oscillation amplitudes and model
natural frequencies have been changed by gradient index variation. With
increasing the gradient index, the vibrational oscillations were damped
faster. This study has discovered that the application of FG materials in
design of helical springs increases the damping capacity and vibration
resistance of these structures. The proposed numerical model can be
extended to non-cylindrical springs and has provided insights into the
optimal design of helical structures in engineering applications.
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