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ABSTRACT ARTICLEINFORMATION

Due to promising properties such as low toxicity against different cell lines, being highly stable fluorescent with- Article history:

out showing photobleaching, and good surface properties, nanodiamonds have gained ever-increasing attention Received 01 September 2020

for various biomedical applications including bioimaging and therapeutic applications. Various methods are used Received in revised form 19 October 2020
for the fabrication of nanostructured diamond, the commonly used of which is the denotation technique. Newer Accepted 14 December 2020

approaches are being practiced for the modification and functionalization of their surfaces by different biomol-

ecules suitable for interaction with considered targets. In this review, the scope and recent advancement in the Keywords:

field of nanodiamonds for biomedical applications particularly their application for nanocomposite scaffold and Nanodiamonds

implants are discussed. Surface modification
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1. Introduction bells, peapods, cones, rods, horns, onions, and tubes [1-4]. A detailed

investigation of NDs was initiated in Russia in the 1960s. Since then,

Nanocarbons involve a diverse structural family, one of which is these nanoparticles have attracted significant attention because they
s

nanodiamonds (NDs). NDs can be found in the form of nano-sized di- can be produced on large scale by cost-effective processes based on the

amondoids, fullerenes, amorphous carbon, foam, platelets, whiskers, detonation process of carbon-containing explosives. Moreover, nanodi-
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Fig. 1. Fabrication of nanodiamonds through detonation.

amonds are highly biocompatible, they can be easily functionalized like
bioconjugation, and they have a small particle size of about 5 nm. A few
products based on carbon nanomaterial such as derivatized fullerenes [5-
8] or adamantane derivatives (e.g. memantine, amantadine, and rimanta-
dine) have found ways to medicinal practice; however, ND suspensions
have offered promising outcomes when used in animals and human pa-
tients suffering from cancer [9-12].

Similar to other nanoparticles such as metallic nanoparticles, carbon
nanoparticles, and quantum dots, NDs can be used for the production
of therapeutic agents for tissue scaffolds, anti-bacterial treatments, an-
ti-viral treatments, gene therapy, delivery vehicles, diagnostic probes, as
well as the preparation of new medical devices like nanorobots [13-19].
Moreover, the prospective exploitation of nanodiamonds can be applied
for bioanalytical purposes including purification of proteins or biolabel-
ing by the application of NDs with high fluorescence properties [20, 21].
The limitless potential of bio nanotechnology is demonstrated by the
interaction of engineered nanostructured materials (e.g. ceramic, metal-
lic, polymeric, and composite materials) at the molecular level which
acts highly specific [22, 23] Nevertheless, the establishment of novel
analytical methods, development of diverse nanofabrication approaches,
and miniaturization of devices, e. g. BIOMEMS is required for taking
advantage of the advances of NDs in clinical trials [24-29].

This paper presents an overview of the processing and purification of
nanodiamond particles, their properties, as well as their biomedical ap-
plications. In this review, the focus will be on the biological applications
of NDs, especially in scaffolds and implants. Lastly, existing challenges
and prospective directions in the development of NDs in biotechnology,
engineering, and medicine will be discussed.

2. Nanodiamonds

At ambient pressure and temperature, the most stable allotrope of
carbon is known to be graphite and diamond has a metastable state [30-
32]. Besides the subtle difference in the energy state of graphite and
diamond (0.02 eV), the energy barrier existing between the two phases
is high (~0.4 eV per atom). Therefore, the transformation of the phases
requires high pressure and temperature and/or catalyst [33, 34]. Due to
the dependence of the Gibbs free energy on the surface energy, the clus-
ter size should be included in the nanoscale carbon phase diagram in ad-
dition to temperature and pressure[35, 36]. Nanoscale diamonds consist
of a core with sp* carbon structures together with disorder/defect and
sp? carbon on the surface, which is available with single-digit nanoscale
individual particles in colloidal suspension [37-39].

Diamond nanostructures in the size range of 1 to 100 nm are in the

forms of pure-phase particles, 2-D diamond nanoplatelets, 1-D diamond
nanorods, and diamond films. Ultra-nanocrystalline diamond (UNCD)
is a special group of nanodiamonds with a size of a few nanometers,
and their characteristics can be distinguished from other nanostructured
diamonds with sizes larger than 10 nm [40-42]. In the 1960s, “deto-
nation nanodiamond” (DND) or ultradispersed diamond” (UDD) with
characteristic sizes of 4 to 5 nanometer were fabricated in the former
USSR using detonation of carbon-containing explosives. At the end of
the 1990s, Argon National Laboratory in the U. S. developed pure-phase
UNCD films via chemical vapor deposition (CVD). Their characteristic
grain sizes were between 2 to 5 nm [42-44].

Today, baffling nanodiamond arrays are available for investigations.
Various methods have been developed for the fabrication of these nano-
materials including the detonation method (Fig. 1), high-energy ball
milling of diamond microcrystals produced at high temperature and high
pressure (HPHT) [45, 46], laser ablation [47], ultrasound cavitation [48],
electron irradiation of carbon ‘onions’ [49], ion irradiation of graphite
[50], chlorination of carbides [51], autoclave preparation from super-
critical fluids [52], and chemical vapor deposition (CVD) with plasma
assistance [53]. Among these techniques, the first three methods are em-
ployed commercially.

According to astronomical observations, the presence of NDs in the
protoplanetary disks of some star types has been demonstrated [54, 55].
However, scientists are still investigating the origins of these cosmic
sources. For using NDs for research and industrial applications, the
large-scale production of nanodiamonds is needed. In this paper, we will
review the production, modification, and applications of NDs, while
concentrating on their application for tissue engineering.

3. Synthesis and purification of nanodiamonds

Carbon-containing explosives can provide a source of energy for the
transformation of carbon to nanodiamonds (Fig. 1a) [34, 56, 57]. This
method is eco-friendly and by using this technique, we can dispose of
old munitions, like Composition B, while using other explosives might
be possible. The detonation of explosives occurs in a closed chamber
that is filled by water/ice coolant (wet synthesis) or an inert gas coolant
(dry synthesis). Detonation soot that is used for naming the resultant
products is composed of diamond particles in the range of 4 to 5 nm
(~75 wt%) accompanied by other allotropes of carbon and impurities.
Based on cooling media, the carbon yield is about 4 to 10 wt% of the
explosive [56-59].

The mechanism of ND formation by detonation was proposed by
Danilenko [34, 56]. The Jouguet point temperature and pressure (point
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Fig. 2. Processing stages of NDs.

A'in Fig. 1b) do not reach the point to form liquid bulk carbon, however,
they are enough for the production of liquid carbon at the nanoscale (Fig.
1b). For nanocarbon, the liquid carbon region is shifted to lower tem-
peratures, and there is a slight shift in the nanodiamond stability region
to higher pressures (Fig. 1b). Therefore, the nucleation of NDs occurs
by liquid carbon condensation and crystallization in the supersaturated
carbon vapor (Fig. 1c). Other explosive-based methods, such as using
waves for the production of NDs from graphite, fabricate NDs with crys-
tallite sizes greater than 10 nanometers.

As mentioned, about 25-85 wt% of the detonation soot is graphitic
carbon, and about 1-8 wt% of that is composed of incombustible impu-
rities such as metals and oxides. Therefore, for most applications, it is re-
quired to be purified [57, 60]. The sources of the metallic impurities are
the steel walls of the chamber (iron and other metals) where detonation
occurs and the igniter that initiates detonation (typical azides of copper,
lead, or silver). These impurities can be found on the outer surface of ND
aggregates or inside them; hence, the aggregates must be disintegrated
for the removal of the trapped impurities [61, 62].

For the removal of non-diamond carbon on an industrial scale, lig-
uid oxidants such as HNO,, HCIO,, H,0,/HNO, under pressure, Na,0,,
KOH/KNO,, K,Cr,0, in H,SO,, or a mixture of HNO, and H,SO,, are
used for the purification of detonation soot [56, 57]. To reduce the con-
centration of non-carbon impurities to less than 0.5 wt%, further expo-
sure to HCl and other treatments are carried out. Using a liquid phase for
purification is hazardous and expensive so that 40% of the product cost
is contributed to this process. An alternative environmentally-friendly
approach for the removal of non-diamond carbon is its oxidation by air
or ozone-enriched air at a high temperature [60, 63]. Oxidizing in the air
is an eco-friendly, robust, and cost-effective purification method, which
can change the content of diamond from ~25 wt% to more than 95 wt%.
Because of oxidation, different presented functional groups are removed
from the surface of NDs, and oxygen-containing surface functional
groups, mainly carboxylic acids and anhydrides are produced. Conse-
quently, different nanodiamond grades can be converted to materials that
contain a high diamond content with unified surface chemistry [3, 60].

In comparison with the acid-purified NDs, the aggregate size of
ozone-purified ones in aqueous dispersions is about 160-180 nm and a
higher amount of faceted particles in the range of 3 to 5 nm is produced
[63, 64]. Moreover, due to highly acidic surface groups in the hydrosols
purified by ozone, their pH is very low; for instance, the pH value for
10 wt% hydrosol is between 1.6 and 2. Additionally, the electrokinetic
potential ({-potential) varies from -50 mV for polydispersed specimens
to -100 mV for the fraction with the size of 20-30 nm and the potential
remains constant between the pH values of 2 to 12. Thus, the most prom-

ising technique for the purification of NDs is gas oxidation. The reduc-

tion of surface in a hydrogen atmosphere has been practiced, however,
the removal of non-diamond carbon was not complete [65].

4. Surface modification and de-agglomeration of nano-
diamonds

Commercial NDs are often required to undergo further processing
and modification. This is due to their high content of non-diamond car-
bon and incombustible impurities, the large average size of aggregates,
and unsuitable surface chemistry for proposed applications [19, 66, 67].

Even though the diameter of NDs is between 4 to 5 nm, there is a
tendency to aggregation in the particles and the size of the aggregates
is larger in common commercial ND suspensions, which are sometimes
resistant to ultrasonic treatment. Even though the presence of the aggre-
gates could be beneficial for some application such as drug delivery [68]
or chromatography [69], de-aggregation of the particles into individual
primary ones are often required for exploiting the advantages of NDs
[70].

Osawa et al. [71] developed a microbead (SiO, or ZrO,)-assisted
ultrasonic de-aggregation process using the suspension of NDs, which
was reported to be able to yield individual ND colloidal solutions with
diameters of 4-5 nm. Using microbeads bring about some complica-
tions, mainly contamination with bead material and the graphite layer
that forms on the surfaces of nanodiamonds [72]. It is also required
to remove metal contaminants and amorphous carbon that was released
from the aggregates during milling. On the other hand, the re-aggrega-
tion of the particles occurs during the purification of milled diamonds
with the help of liquid oxidizers [72]. According to recent studies, suf-
ficiently purified and oxidized particles in the air are allowed for subse-
quent isolation of stable hydrosol nanoparticles with a diameter of 4-5
nm by centrifugation [73].

Recently, the de-aggregation of particles from microscale aggregates
to stable nanoparticles with a diameter in the range of 5-20 nm has been
practiced by dry milling in cheap and abundant media like sugar and
water-soluble salts. These media do not produce contaminants [74]. The
reduction of NDs in borane with the help of ultrasonic treatment was
reported to yield finer aggregates [75]. Aggregates with a diameter of
~20 nm were also obtained with surface graphitization and subsequent
functionalization [76]. Nanodiamond aqueous colloids containing stable
single particles were also obtained by hydrogen treatment at high tem-
peratures and the nanoparticles with the size of 2-4 nm were isolated
using a centrifugation process at above 10,000 rpm [77, 78].

Re-aggregation of NDs after additional surface functionalization is

a concern regarding the processing of nanodiamonds. Because of capil-
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Fig. 3. Surface modification of NDs.

lary forces that attract the particles together, re-aggregation may also be
promoted by drying (for storage). It could be caused by attractive van
der Waals forces, which make the functionalization an arduous task. An
approach for the prevention of re-aggregation after drying is the treat-
ment of NDs in NaCl solution with the assistance of ultrasound [61, 79].
The prevention results from the attachment of Na* ions to the surfaces of
NDs. Halting re-aggregation of NDs fabricated via NaCl-assisted mill-
ing can also be explained by this reason [74].

NDs can be separated into fractions by their size and weight using
centrifugation [80, 81]. Unlike methods that introduce contamination
(e.g. bead milling), centrifugation is contamination-free and ND frac-
tions (different sizes) are possible to be isolated suitable for various
applications. For instance, only small particles can be used for drug de-
livery, while NDs that can form photonic structures for light diffraction
are required to have aggregate sizes above 100 nm [82]. Obtaining small
NDs by centrifugation is economically feasible when NDs purified by
air or ozone are used rather than acid-purified NDs. This is because of
a higher fraction of fine aggregates achieved by the former approaches.
Although single-digit NDs can be extracted by ultracentrifugation, the
yield is low. Therefore, the dispersion of NDs into individual particles
requires the development of facile, scalable, and non-contaminating
techniques. The processing of NDs from synthesis to de-aggregation is
illustrated in Fig. 2.

NDs are superior to carbon nanotubes (CNTs) and other graph-
ite-based nanoparticles in terms of the possibility to attach various func-
tional groups to their surfaces [44]. This capability not only provides
complex surface functionalizations but also preserves the promising
characteristics of the diamond core [83]. Nevertheless, understanding
their interaction mechanism with their surrounding materials and the al-
leviation of adverse effects such as aggregation is essential [84, 85]. The
different functional groups that exist on the surface of commercial NDs
can be utilized for covalent functionalization; however, starting with
carboxylated NDs prepared by ozone and air purification methods, and
then making use of the COOH groups’ rich chemistry is more conve-
nient. As a result of the hydrogen microwave chemical vapor deposition
plasma treatment at temperatures higher than 700 °C, COOH groups are
completely removed and hydrogenated NDs are produced by the com-
plete removal of oxygen from the surface [86].

In comparison with gas treatments in the temperature range of 400-

850 °C, milder conditions are required for wet chemistry. An enhanced
selectivity is provided by this approach through the conversion of plenty
of functional groups known in organic chemistry (Fig. 3). In several wet
chemical reactions, reactive C—Cl and C—F bonds on the surface gen-
erated by photochemical chlorination and halogen annealing have also
been used [87, 88]. Long alkyl chain terminations were produced on the
surface of NDs by esterification of O-H terminations with acylchlorides
[89]. O-H terminates are also involved in silanization/de-aggregation
[90]. Also, the modification of NDs by taking advantage of the graphitic
carbon chemistry can be performed. Graphite carbon can be either in-
trinsically present or formed by surface graphitization. Strong bonds of
C—C can be formed between the surface group and the graphitic shell,
while C—X bonds (where X is S, O, N, etc.) are created by methods that
work based on the chemistry of ND functional groups [91, 92].

Diazonium chemistry and Diels—Alder reactions have been used for
the functionalization of nanodiamond graphitic shells. Diazonium chem-
istry has been utilized with hydroxylated nanodiamond for the produc-
tion of C-O—C bonds between the diamond core and the attached moi-
ety, and also with hydrogenated NDs for the C—C bond formation [93].
Even though there are different options for surface functionalization of
NDs, the uniformity and purity of the starting materials surface chemis-
try strongly affect the outcome [94, 95]. The development of quantitative
analysis for the evaluation of different groups present on the surface of
NDs is a challenge in this regard.

5. Properties of nanodiamond
5.1. Fluorescence

The promising fluorescence properties of NDs results from nitrogen
atoms next to a vacancy called nitrogen-vacancy (NV) centers in NDs.
To create NV centers, NDs are irradiated with high-energy particles
such as protons, electrons, and helium ions, and then vacuum annealed
at 600-800 °C [96, 97]. During irradiation, vacancies are formed in the
diamond structure, and the annealing treatment leads to the migration
of the vacancies and their entrapment by N atoms present in NDs [98].
Different spectra are emitted based on the NV center types that would be
either negatively charged (NV-) or neutral (NV?). The spin ground state
of S =1 of NV centers provide the possibility of spin polarization by
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optical pumping and manipulation through electron paramagnetic reso-
nance. Additionally, NV~ centers possess long spin coherence times. In
isotopically clean diamonds, fluorescent NV centers have been favored
for quantum computing [99], while in NDs, NV centers are being stud-
ied for biomedical imaging [96], high-resolution magnetic sensing [100-
102], and fluorescence resonance energy transfer applications [103].

Diamond synthesized at high temperatures and high pressures con-
tain about hundreds of ppm of native substitutional nitrogen and thereby
they are the candidate for developing bright photoluminescent [45, 96].
These materials are then ground to nanoparticles containing single-digit
NDs [45]. The concentration of electron-irradiation-generated fluores-
cent NV defects is not significantly affected by the nanocrystal size;
however, the produced fraction of NV-defects is reduced with the de-
crease in the nanodiamond size due to electron traps at the surface [104].

With the help of medical imaging, it is possible to detect and diag-
nose a variety of diseases, and thereby the healthcare industry is seeking
innovations in the imaging field [105-108]. Up to now, NDs fabricated
by explosives have not been considered as promising materials for NV-
center-based imaging applications. In recent years, individual pristine
NDs with a diameter of 5 nm synthesized by the detonation of TNT
and hexogen precursors have shown NV-center-based intermittent lu-
minescence [102]. Additionally, larger NDs (above 20 nm) with trapped
NV centers fabricated by graphite and hexogen [109] and TNT and hex-
ogen [110] precursors have exhibited stable luminescence. Doping of
nitrogen into the ND core and the in situ creation of NV centers are
influenced by numerous factors including the cooling conditions and the
nitrogen amount in the precursors. The reasons for the low intensity of
fluorescence in NDs synthesized from explosives are the existence of
internal defects and the proximity of surface defects dependent on their
size [102, 109].

Adsorbing [111] or linking [66, 112] of different fluorophores onto
NDs can also produce fluorescent particles. NDs with fluorophore link-
age can move through cellular sections with varying pH values without
changing cell viability or causing degradation of fluorophore linked to
the surface over a long period [113]. Octadecylamine was linked to car-
boxylic groups on the surfaces of NDs and thus, bright blue fluorescent
NDs were formed [114]. Not only do fluorescent NDs benefit from the
promising properties of semiconductor quantum dots, namely, high pho-
tostability, small size, and bright multicolor fluorescence, but also they
show rich surface chemistry, biocompatibility, and non-toxicity. These
properties would probably revolutionize in vivo imaging [96, 115, 116].

Zhang et al. [117] prepared the multimodal nanodiamonds by at-
taching monoclonal antibodies and drug-oligonucleotide conjugates
labeled by fluorescent onto the surface of ND. They reported that by
these linkers, it is possible to quantify the ND conjugates and observe
intercellular regions. Dong et al. [118] prepared fluorescent nanodia-
mond-based composites by a simple and novel method. The hydrophilic
polymer/ functionalized ND composite was reported to be suitable for
different biomedical applications because of their good potential and
physicochemical properties. Also, they reported that these samples have
strong fluorescence intensity, low toxicity, and high water dispersibility.
According to the result of cell uptakes, the cells could internalize the
fluorescent nanodiamond-based composites. Sarkar et al. [119] used a
new background-free imaging method and reported that this technique
enhances the ratio of signal-to-background up to 100 times. Also, an
improvement was observed in the fluorescent nanodiamond imaging ca-
pabilities on diverse fluorescence imaging platforms.

5.2. Biocompatibility
Although glassy carbon and diamond are not toxic, carbon nanopar-

ticles cannot be assumed also non-toxic. Because of a variety of pro-
cesses for purification and different options for surface modification

used by various manufacturers, the toxicity caused by NDs is a concern
[120-122]. In vitro and in vivo properties such as gene program activity,
cell viability, and in vivo physiological and mechanistic behavior in the
presence of NDs have been investigated [66, 120, 123-127].
Researchers demonstrated that instilled NDs within the trachea had
a low level of pulmonary toxicity. The ND amount decreased with time
in the alveolar region. Moreover, after 28 days after exposure, ND-bur-
dened macrophages were observed in the bronchia [9, 125, 128, 129].
Systemic toxicity and serum indicators of the liver were not affected by
using high dosages of intravenously administered ND complexes [127].
Mohan et al [126] studied worm reproduction, cytotoxicity, and
stress response activity of fluorescent NDs with an average hydrody-
namic size of about 120 nanometers in Caenorhabditis elegans worm.
They reported that bare ND particles remained in the lumen of the worm,
while NDs coated with bovine serum albumin or dextran were adsorbed
into its intestinal cells. Transferring NDs injected into worm gonads to
the larvae and offspring was observed, however, this did not affect the
survival or reproductivity of the worms. It was also indicated that flu-
orescent NDs are non-toxic and do not cause stress in the worm, thus,
they are suitable for in vivo imaging. Overall, the biocompatibility and
toxicity of newly developed NDs should be carefully investigated.

6. General applications

ND additives have been utilized for metal plating (electrolytic/elec-
troless) for a long time [130, 131]. In recent years, these particles have
found ways to other applications. In this section, different applications
of NDs are addressed.

Tribology and lubrication: Adding detonation soot containing
diamond to lubricants causes about 5% reduction in fuel consumption
and prolongs the engine life [130]. Two reasons contribute to this effect:
1) the existing graphite has a lubrication effect: 2) friction is reduced
on sliding surfaces by NDs through polishing away asperities. The en-
hancement in tribological performance is provided when purified NDs
are dispersed alone or together with metal nanoparticles or polytetrafluo-
roethylene (PTFE) in oils or greases [132]. The initial assumption about
the lubrication mechanism was acting as ‘ball bearings’, however, recent
studies suggested different contributing mechanisms. For instance, the
wear mechanism for Al alloys is significantly affected by the viscosity of
the ND suspension, while a decrease in wear and friction of carbon steel
is the result of the embedment of NDs from the lubricant into the surface
of the carbon steel [114]. It is possible to tailor the surface chemistry of
NDs so that they can be dispersed in various systems such as water and
oil [133].

Because of the microscopic ball-bearing effect, carbon onions can
offer an efficient lubrication effect. Generally, in contrast to expecta-
tions, the lubrication mechanism is more complex, but it can be accepted
that both carbon onions and NDs embed into the surfaces of metals and
thereby leading to the separation of sliding surfaces and prevention of
wear resulting from metal-metal adhesion [134, 135].

Nanocomposites: Nanocomposites have shown promising prop-
erties suitable for a variety of applications [136-139]. NDs have been
suggested as excellent fillers for composites owing to their rich surface
chemistry, and good thermal and mechanical characteristics. Also, the
fillers can tailor these composites for biomedical applications due to
the diamond core’s chemical stability and biocompatibility. It has been
reported that the ND addition to polymers caused the enhancement of
their thermal conductivity [140, 141], electromagnetic shielding [142],
adhesion [143], wear resistance [ 144], and mechanical strength [47, 141,
145-148]. On the other hand, in the case of using aggregated or non-pu-
rified NDs, degradation in properties has been observed, which confirms
the necessity of proper functionalization and well dispersion of these
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The addition of small amounts of NDs to transparent poly(vinyl alco-

particles.

hol) showed improved mechanical properties [149]. Surface chemistry
can control the interfacial interaction between the matrix and NDs as
well as their dispersion in the matrix. If NDs are modified, they can
covalently bond with metal, ceramic, polymeric matrices, and further
enhancement can be provided for composites [146, 150, 151].

Drug delivery: A drug delivery system is required to have some
properties including scalability, dispersibility in water, the capability of
carrying various therapeutics, and biocompatibility [152-156]. Another
important property is the targeted therapy potential combined with im-
aging possibility. Most of these requirements are met by NDs [157-161].

Delivery of doxorubicin (Dox) by ND-based systems has been
shown to be safe and effective [162-164]. ND-Dox complexes were uti-
lized for the treatment of liver cancer (LT2-M) and breast cancer (4T1)
models. The application of ND-Dox complexes increased the circulation
half-time to 10 times of unmodified doxorubicin, and the doxorubicin
expelling capacity of tumors decreased. Other benefits of drug delivery
systems based on ND-Dox are reported to be a noticeable decrease in the
tumor size, the absence of myelosuppression, and the absence of mortal-
ity in the case of high delivery doses [123, 165, 166]. Besides, deliver-
ing small molecules polyethyleneimine 800 (PEI800)-coated NDs were
investigated for the delivery of nucleic acids. Different loadings have
been delivered by NDs such as siRNA for specific cancers [158], small
molecules in acidic environment [3], proteins [3, 157], and covalently
bonded drugs [167, 168].

The functional groups are present on the surface of ND, especially
oxygenated moieties including hydroxyl, ether, ketone, lactone, carbox-
ylic acid. ND is a widely applicable nanocrystalline due to its structural
stability, natural biocompatibility, and non-toxic nature. According to
previous works, ND has a role as a drug carrier of dexamethasone, 4-hy-
droxytamoxifen, purvalanol A, and doxorubicin for blood cancer, breast
cancer, liver cancer, and colon cancer therapies, respectively [169].

Protein mimics: Owing to promising properties such as low cyto-
toxicity, ability to self-assemble, rich surface chemistry, stable core, and
small size, NDs are being used for mimicking globular proteins [170,
171]. Besides the ability to deliver drugs, other molecules such as ge-
netic material can be delivered across cellular membranes. NDs are also
able to mimic other functions of proteins. For instance, proteins that
are involved in the folding/unfolding of DNA are highly alkaline his-
tones. During this process, a nucleosome that contains histones in its

core, spool the DNA strand around itself. NDs not only can be increased
close to the size of histones by selective air oxidation [172] but also by
employing covalent bonding of amino groups, their surface alkalization
is possible [146]. The alkaline NDs can then be folded with DNA to
form artificial nucleosomes. Functionalized NDs can also mimic some
proteins’ enzymatic functions due to their catalytic properties [173].

Tissue scaffolds and surgical implants: Due to the restoring poten-
tial for damaged tissue, regenerative medicine, and tissue engineering
are of great interest [174-177]. Like protein-coated materials, ND mono-
layers have been indicated to act as a suitable platform for the growth
of neuronal cells [178]. Reinforcement of biodegradable polymers with
NDs provides prospective advantages for the synthesis of multifunction-
al tissue engineering scaffolds due to their biocompatibility, superior me-
chanical properties, delivering biologically active molecules and drugs,
and tunable surface chemistry [179]. One of the ND-containing polymer
composites studied for biomedical applications is ND octadecylamine
(ODA)-poly (I-lactic acid) (PLLA). PLLA is a biodegradable and bio-
compatible polymer, however, its mechanical properties cannot satisfy
the requirements for load-bearing implants. It has been reported that the
incorporation of ND-ODA and its good dispersion enhanced Young’s
modulus and hardness of the composites close to those obtained for hu-
man cortical bone. Also, no changes in proliferation and morphology of
murine 7F2 osteoblast cells cultured on the ND-ODA-PLLA scaffold
were observed. Therefore, clinically relevant properties are obtained by
these composites while offering high scalability and non-toxicity [123,
179-181]. The remarkable enhancement of properties caused by the ad-
dition of NDs could suggest these materials to be used in a wider range
of biomaterials.

7. Scaffolds based on nanodiamond composites
7.1. Fabrication methods

Selective laser sintering (SLS): In this method, polymer/ND pow-
ders first are poured on a workbench, and then the powders are sintered
selectively by laser-based layer-by-layer sintering following a pre-de-
signed scaffold model. At the final step, the sintered scaffold is achieved
by removing the residual powder [67]. This process is schematically
illustrated in Fig. 4.

Feng et al. [182] synthesized poly(3-hydroxybutyrate-co-3-hydroxy-
valerate) PHBV/ND, PHBV/MoS,, and PHBV/ND/MoS, composite
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powders via a solution mixing technique. Selective laser sintering with
laser power of 2 W, scanning speed of 200 mm/s, and a spot diameter
of 50 um was used for the fabrication of cylindrical scaffolds with a
height of 10 mm and a diameter of 8 mm. PLLA/ND composite scaffolds
were also prepared by Shuai et al. [67] using the selective laser sintering
method.

Electrospinning: This technique is a facile, efficient, fast, and
cost-effective route for the production of nanofibers from a polymeric
melt or solution via applying electrostatic forces [183, 184]. This meth-
od is used for the fabrication of fibrous polymeric scaffolds [185, 186].
In this technique, ND particles are dispersed in a polymer solution, and
then the polymeric solutions are loaded into a syringe equipped with a
metallic needle. The electric potential is applied to the metallic needle
and aluminum foil is used to collect the as-spun nanofibers. The param-
eters that contribute to the electrospinning method are temperature, feed
rate, polymer concentration, voltage, and distance between the collector
and needle [179, 187, 188]. The synthesis of poly (lactic-co-glycolic
acid)/nanodiamond (PLGA-ND) composite was reported using the elec-
trospinning of a dimethylformamide and methylene chloride solution. In
comparison with pure PLGA fibers, PLGA-ND fibers were noticeably
thicker. The results demonstrated that cell spreading of human mesen-
chymal stem cells (hMSCs) improved compared to pure PLGA. This is
due to the presence of oxygen termination of NDs that provides hydro-
philicity in ND-containing scaffolds [189, 190]. Houshyar et al. [187]
performed wound healing dresses based on polycaprolactone (PCL) and
ND using electrospinning. Enhanced moisture and wicking management
in NDs results from different hydrophilic groups on their surfaces. Fur-
thermore, excellent cellular activities and no cytotoxicity were exhibited
by the composites.

In-situ polymerization: ND nanocomposite scaffolds can be pre-
pared by in-situ polymerization. ND particles are usually functionalized
and the nanodispersion is added to a monomer-containing solution. Fi-
nally, self-assembly and polymerization of monomers occur in the pres-
ence of functionalized ND [179, 191]. Alishiri et al. [192] polymerized
acrylate-terminated polyurethane-acrylate diluents (APUA) in the pres-
ence of 2- hydroxyethyl methacrylate (HEMA)-grafted ND. This meth-
od led NDs to well dispersion in APUA resulting in the enhancement
of mechanical properties. Ultra-high molecular weight polyethylene
(UHMWPE)/ND nanocomposites were also successfully synthesized by
in-situ polymerization based on bi-supported Ziegler-Natta catalyst. The
results showed that the mechanical properties of both silane-modified
and unmodified NDs were improved [193].

Solvent casting: Due to the solubility of biopolymers in various sol-
vents, solvent casting has been considered as a facile and commonly
used technique for biopolymer film synthesis. Solubilization, casting,
and drying are the steps that are involved in this approach [167]. For the
preparation of ND-containing nanocomposites by solvent casting, nan-
odiamonds are first ultrasonically dispersed in a solution. The polymer
then is added to the prepared solution; afterward, the mixture is poured
on a glass substrate or in a mold followed by the complete evaporation
of the solvent [194].

Maitra et al. [195] incorporated acid purified ND in a PVA film to
improve the mechanical properties of the polymer for applications in
broader biomedical areas [196]. Fox et al. [148] also used the solvent
casting method to reinforce the polycaprolactone (PCL) film with flu-
orescent ND. In this regard, a mixture of PCL and fluorescent ND in
methanol was prepared followed by casting for the production of free-
standing films. Sun et al. [144] synthesized chitosan and ND-COOH
composite films by using a solvent of acetic acid. The results showed the
improvement of mechanical properties owing to a strong interaction be-
tween chitosan polymer chains and carboxyl groups of ND. Zhang et al.
[123] added ODA-grafted ND to a mixture of chloroform and PLLA and
showed that the addition of nanodiamonds enhanced Young’s modulus

and hardness of PLLA.

The preparation of nanocomposites by solvent casting is a suitable
method; however, selecting an appropriate solvent that can dissolve both
ND particles and polymer would be a critical issue affecting ND aggre-
gation. Thus, the functionalization of ND is necessary in most cases to
achieve uniform distribution in polymeric films [197, 198].

7.2. Nanocomposite scaffolds and implants

ND-containing composite scaffolds are gaining increasing attention
for biomedical research and applications. Shuai et al. [67] modified
ND by phospholipid and incorporated the modified particles in PLLA
scaffolds using selective laser sintering. The hydrophilic head (-OH)
of phospholipid was adsorbed on ND surfaces (-COOH), while its
hydrophobic tails were arranged toward the polymeric PLLA matrix.
Therefore, a layer of phospholipid covered ND particles. Because of
the repulsive force between the hydrophobic tails, phospholipids are
forced away from each other leading to better dispersion of NDs in the
PLLA matrix. Compared to unmodified scaffolds, phospholipid-modi-
fied composite scaffolds showed an increase in Vickers hardness, the
compressive modulus, and compressive strength by 88.2%, 163.2%, and
162.8%, respectively. It was reported that the prepared scaffolds acted
as a proper platform for cell adhesion, growth, and migration, indicating
their potential for bone tissue engineering.

Houshyar et al. [187] used the electrospinning technique for the
fabrication of PCL/ND nanofibrous scaffolds. It was proposed that the
scaffolds possessed the requirements for wound healing including the
restriction of microbial activities and the promotion of epithelial cell
proliferation. The outcomes of adding ND to PCL were a delay in the
scaffolds’ thermal degradation, better moisture management, and higher
thermal stability. The proliferation of Chinese hamster ovarian (CHO)
cells for PCL-5%ND after 1, 3, and 7 incubation days exhibited 43%,
38%, and 22% enhancement. Also, microbial activity decreased with the
increase in the ND content. Fox et al. [177] also reported the synthe-
sis of PCL/ND composites by the solvent casting method. The results
demonstrated that hydrophilicity and surface roughness of the ND-PCL
composite films were higher than those of PCL alone. Moreover, their
degradation was slightly enhanced and the tensile strength decreased.
Osteoblast adhesion increased with an increase in the ND loading. Fi-
nally, a 3D composites scaffold was produced by extrusion revealing the
promising potential for tissue regeneration.

Apicella et al. [199] fabricated bio-mechanical scaffolds based on
ND and poly (hydroxy-ethyl-methacrylate) hydrophilic matrix for tissue
engineering. The hybrid material was reported to be potent for biomi-
metic, osteoinductive, and osteoconductive applications as biomechan-
ical bones. Owing to the enhanced mechanical strength, these hybrid
materials can be a replacement for traditional hydrogels with lower
mechanical properties for bone regeneration; they can also be used as
coatings onto metal trabecular scaffolds. Recreation of micro-and mac-
ro-distribution of bone deformations and stresses occur in osteoinduc-
tive ceramic/polymer-coated micro-trabecular metal scaffolds.

Nunes-Pereira et al. [143] used solvent casting to add different types
of ND into Poly (vinylidene fluoride) (PVDF). According to the results,
the thermodynamic stability as well as the optical properties of the sam-
ples could be tailored by the addition of ND nanofillers. Also, the di-
electric losses of the nanocomposites remained constant, and the dielec-
tric constant increased while was independent of the filler concentration.
Moreover, ND nanoparticles were found to be non-toxic. It was con-
cluded that the prepared nanocomposites were promising material for
biomedical applications owing to cell culture properties of the polymer
and nanodiamond potential for drug delivery and protein functionaliza-
tion.

Feng et al. [182] embedded ND particles into MoS, nanosheets and


https://www.sciencedirect.com/topics/engineering/thermodynamic-stability
https://www.sciencedirect.com/topics/materials-science/dielectric-material
https://www.sciencedirect.com/topics/materials-science/dielectric-material
https://www.sciencedirect.com/topics/materials-science/nanoparticles
https://www.sciencedirect.com/topics/engineering/biomedical-application
https://www.sciencedirect.com/topics/engineering/functionalization
https://www.sciencedirect.com/topics/engineering/functionalization

222

Y. Zamani et al. / Journal of Composites and Compounds 2 (2020) 215-227

Table 1.
ND-containing composites for scaffolds and implants
) ND size . L. Fabrication .
Matrix Functionalization Cell type Conclusion Ref.
(nm) method
Incorporation of ND resulted in increased hydro-
. philicity and tailored degradation of the composites
PCL 45 - Solvent Casting Human osteoblasts [177]
compared to base PCL
No cytotoxicity
. . Tensile Strength of FND/PCL composites increased
Acid treatment+octa- L Human lens epithelial
PCL - R Electrospinning compared to pure PCL [151]
decylamine (HLE) .
No cytotoxicity
MC3T3-El pre-osteo-
PVDF <10 - Solvent casting pre-osteo No toxicity [143]
blast cells
PLGA-ND membranes exhibited higher hardness and
L Human mesenchymal
PLGA - - Electrospinning Young’s modulus. [189]
stromal cells (hMSCs) L.
No cytotoxicity
. . Tensile strength of the scaffolds increased by 23.01%
PVDF/bioglass Selective laser . L .
5-10 - L. MG 63 cells Bioactivity of the samples increased [201]
scaffold sintering . . .
Improved osteoinductive properties
Cell Addition of 1 wt % nanodiamond improved the
e
Chitosan 5 Acid treatment Solvent casting 1 of funei young’s modulus and hardness of the composites by [144]
wall of fungi
e 239% and 69% respectively.
The surface energy of the PCL-ND composite
increased by the addition of ND which resulted in
better moisture management, proliferation, and cell
PCL <10 - Electrospinning CHO attachments. [187]
No cytotoxicity
More thermal stability
Increased crystallization temperature
Coating of
Polydiallyldi- N‘I’; meo Cell Viability increased by 40%
s usin,
methylammo- g Human fetal osteoblasts Increased cell adhesion
] 3 4 Polyelectrolyte o . . . . [202]
nium chloride - il (hFOBs) Feasibility of NDs as a coating material for biomedi-
multilayers
(PDDA) (PEMys) cal applications and drug delivery vehicles.
The corrosion resistance of the MG-5ND composites
. Powder metal- . .
Magnesium <10 - ) Fibroblast (L-929) increased by 4.5% compared to pure Mg [203]
ur;
£y Biocompatible and No Cytotoxicity
10 wt% of ND-ODA led to an increase in the strain to
Solution casting failure by 280% and an increase in fracture energy by
followed by 310% in comparison to pure PLLA.
PLLA 5 - . - . o [204]
compression Bonelike apatite is formed on the ND-ODA/PLLA
molding scaffolds when tested in SBF Solution, which may
increase the osteoinductive properties.
The addition of 1 wt% of ND resulted in increased
young’s modulus, Tensile Strength, and percentage
PCL - Electrospinning NIH/3 T3 cells elongation to break. [205]
High cell proliferation rate for 1 wt% ND/PCL
No cytotoxicity
- Incorporation of 1 wt % nanodiamond in PLA im-
Poly(lactic acid) L ; 8
(PLA) <10 - Electrospinning - proved the tensile strength and young’s modulus of the ~ [161]
composites by 239% and 161% respectively.
Poly (L-lac- L
. Young’s modulus of 10 wt% composites increased by
tide-co-e-capro- L .
Anionic polym- . 6 times.
lactone) - L. stem cell line UE7T-13 . . . . [206]
erization Biocompatible and no cytotoxicity for all contents (i.e.
(poly(LLA-co-
1, 5,10, 50 wt%)
CL))
Improved mechanical properties
. Hydrophilicity increased by incorporation of NDs
. In-situ polymer- s . L
APU - Quaternary ammonium rati MC3T3-El1 cells Crystallinity improved which resulted in tailored [200]
ization
degradation rates
No cytotoxicity
. . Enhanced cell viability and proliferation
. L Human adipose-derived X
Gelatin - - Electrospinning Increased scaffold stiffness [207]

stem cells (hASCs)

No cytotoxicity
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then the co-dispersion nanostructure was added to poly(3-hydroxybu-
tyrate-co-3-hydroxyvalerate) (PHBV) by selective laser sintering to pro-
duce scaffolds for bone regeneration. The restacking of the molybdenum
oxide nanosheets was restrained by the placement of NDs between ad-
jacent nanosheets. Additionally, the aggregation of NDs was prevented
by the steric hindrance effect of the MoS, nanosheets. Consequently,
the compressive and tensile strengths of scaffolds containing ND and
MoS, were increased by 52% and 94%, respectively. The mechanisms
that contribute to the strengthening of the scaffolds include crack pin-
ning, crack bridging, crack deflection, as well as pulling out of ND par-
ticles and MoS, nanosheets. Moreover, the scaffolds showed good cell
viability.

Wang et al. [200] added polycation-modified ND loaded with Ag to
acrylate-terminated polyurethanes (APU) for cartilage tissue implants
using in-situ polymerization. The results indicated that the crystallini-
ty of the nanocomposites increased compared to pure APU, showing a
strong interaction between APU and nanodiamonds. Release-killing of
the Ag nanoparticles and contact-killing of cationic polymers resulted
in excellent antibacterial activity of the nanocomposites. Additionally,
the addition of polyethylene glycol to APU increased its degradability
rates significantly. Moreover, the synthesized scaffolds showed low tox-
icity. Overall, the combined effects of hydrophilicity and crystallinity
provided proper degradation rates for APU, which was reported to be
adaptable to the cartilage tissue-healing rate. Some research studies fo-
cusing on the development of ND-containing composites for scaffolds
and implants have been summarized in Table 1.

Table 1. ND-containing composites for scaffolds and implants

8. Conclusions and Future insights

NDs have shown all the ideal properties needed for biomedical ap-
plications. Many research activities in various biomedical applications
have focused on the application of nanodiamonds. However, some chal-
lenges should be addressed including re-aggregation prevention, cost re-
duction, poor cell affinity, controlling by-product degradation, and con-
trolling surface chemistry. As a result, scientists continuously study NDs
to shed light on the surface structure and chemistry to develop functional
materials with improved properties. Composites containing biopolymers
and NDs are also attracting the attention of scientists leading to the in-
troduction of novel materials and methods into this area. In the near fu-
ture, the approval of ND application in implants is expected. Therefore,
a new era for the application of nanodiamonds in the biomedical field
will be opened. The prospective applications of nanodiamonds will be
in various multifunctional devices for simultaneous cell targeting, drug
delivery, and image reactions.
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