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ABSTRACT

ARTICLEINFORMATION

Heat transfer efficiency has always been at the center of attractions for many researchers and industries, and de- Article history:

mand for higher efficiency methods and materials are increased in the last decades. Among the different methods Received 29 August 2020

of heat transfer enhancement, using nanofluids has proven to be an effective technique. In the present paper, the Received in revised form 03 November 2020

properties of nanofluids including viscosity, thermal conductivity as well as convective heat transfer are discussed Accepted 12 December 2020

and useful conclusions about the reported results by different researchers are presented. The effect of volume

fraction, temperature, size and shape of particles, base fluid properties, and other factors on viscosity, and thermal Keywords:

conductivity of nanofluids are reviewed. Also, in the present manuscript, the methods of stable nanofluid prepara- Nanofluid

tion, and the effective factors on the stability of nanofluids are exhibited in detail. Besides, a summarized number Heat transfer

of experimental and mathematical studies on the properties, and stability of nanofluids are listed, compared, and Convection

analyzed. The works about the Nusselt number in fluids and nanofluids are presented in detail to determine the Thermal conductivity

future challenges of nanofluids.
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1. Introduction

The rising energy demands and concerns about environmental pollu-
tions have motivated the engineers to utilize new sources of energy such
as solar, wind, and biogas [1-4]. The optimization of thermal systems
is inevitable to increase the efficiency and reduce the cost and air pol-
lution [2, 5-9]. The energy-efficient systems are obtained by enhancing
the heat transfer rate using different passive or active methods [10, 11].
Active methods benefit the external energies such as electric or magnetic
field, vibrating surface, or a mechanical mixer. However, the passive
methods don’t need external sources and the heat transfer enhancement
is obtained by a change in geometry or fluid properties [12, 13]. The
miniaturization of the channels, using the fins, or utilizing nanofluids are
some common passive methods [11, 14—17]. In the last decades, due to

the developments of miniaturized devices, such as computer electron-

ic components, the old techniques of cooling became inadequate [15,
18-20]. Besides, the evolutions in technology have created an urgent
demand for new and efficient cooling methods to maintain the device
temperatures below the critical area. This need for new methods has
motivated the researchers to study and find a profitable way. Nanofluid,
which is the mixture of nano-sized particles in the base fluid, proved to
be a novel heat transfer method in heat transfer issues [21].

Nanofluids are known as a new generation of fluids with hidden and
unknown thermal capabilities.

Choi [22, 23] introduced nanofluids and claimed that they showed
better heat transfer characteristics than their base fluids. Adding
nanoparticles to the base fluid is a passive method for improving heat
transfer processes [24]. The volume fraction of the nanoparticles as well
as their size and type are significant factors that result in the mentioned
improvements. Also, the working temperature and type of fluid play role
in enhancement [25, 26].
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Nomenclature

A Area (m2)

c, Heat capacity (J/kg.K)

CTAB Cetyltrimethylammonium bromide
d Diameter (m)

EG Ethylene glycol

EO Engine oil

GA Gum Arabic

Convective heat transfer coefficient (W/m2 K)

Thermal conductivity (W/m.K)

L Length (m)

n Shape factor

Nu Nusselt number

PG Propylene glycol

Pr Prandt] number

PVP Polyvinyl pyrrolidone nanofluids
R Thermal resistance (m?> K/W)

r Radius (m)

Re Reynolds number

SDBS Sodium dodecylbenzene sulfonate
SDS Sodium dodecyl sulfate

T Temperature (K)

vol Volume fraction

wt Weight fraction

Greek Letters

o Thermal diffusivity

B A constant

n Dynamic viscosity (Pa.s)
p density (kg/m?)

c A constant

) Particle volume fraction
" Sphericity

Subscripts

bf Base fluid

c Critical

eff Effective

1 Laminar

p Particle

t turbulent

Nowadays, nanofluids have been used in many fields of industries
such as electronic, nuclear, medicine, and transportation systems [27].

Nanofluids preparation, stability, characterizations, thermal features,
conduction, and convection heat transfer processes have been studied
widely by the researchers [28]. For the first time, Choi [22] dispersed the
nano-sized particles in a base fluid and called the mixture as nanofluid.
After introducing nanofluids, Lee et al. [29], Eastman et al. [30], Yu et
al. [31], and many other researchers investigated the thermal behavior
of nanofluids, and heat transfer rate enhancement by use of nanofluids
was proved. It was also shown that the unique behavior of nanofluids
may originate from some mechanisms such as the Brownian motion of
nanoparticles and decreases in the thermal boundary layer [32].
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Fig. 1. Synthesizing methods of nanoparticles [21].

As mentioned above, the stability of nanofluids is a crucial factor that
determines the applicability of nanofluids. Researchers always looking
for stable nanofluids. So, many stability tests have been accomplished
and the results showed the three main different methods to prepare a
stable suspension, that is surfactants, ultrasonic bath, and pH control
[33-35]. Also, there are other factors such as viscosity that are critically
related to the pumping power of nanofluid. Although there are a lot of
experimental studies of the nanofluids behavior, numerical methods are
still a strong tool to obtain detailed information about the investigated
phenomenon and have wide applications in heat and mass transfer, bio-
mechanics, and solid mechanics [36, 37, 46, 38-45].

In the present paper, a critical review of the preparation, characteri-
zation, and heat transfer enhancement nanofluids has been done. We are
attempting to provide a comprehensive review of the factors that affect
the thermos-physical properties of nanofluids. Also, the experimental
correlations and results have been compiled. The present review mainly
aims to summarize the recent researches on thermophysical properties
and the stability of nanofluids and applications of nanofluids in various
industries and devices.

2. Nanofluids
2.1. Preparation methods

Nanofluids are recognized with their unique thermal properties, such
as viscosity, thermal conductivity, and many other properties, compared
to common fluids. Many types of nanoparticles are used for synthesizing
nanofluids including carbon nanotubes, metals, metal oxides, ceramics,
etc. metals generally have considerably high thermal conductivities than
fluids, however, some types of advanced ceramics offer interestingly
high thermal conductivities even more than common metal, such as ZrB:
[47, 48, 57-66, 49, 67-76, 50, 77-86, 51, 87-96, 52, 97-102, 53-56],
TiB2[103, 104, 113—121, 105-112], SiC, AIN [122-125], TiC [126, 127,
136, 128-135], and HfB2[137]. These ceramics have proved remarkable
thermos-mechanical behaviors in different branches of industry [138,
139, 148-157, 140, 158164, 141-147]. One of the important factors,
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Fig. 2. Effective parameters on thermophysical properties of nanofluids.

which affects the final properties od nanofluids, is the preparation of the
nanoparticles [165]. Some of the synthesizing methods of nanoparticles
are presented in Fig. 1.

Also, there are various methods for analyzing nanoparticles. The
most common methods are Transmission Electron Microscope (TEM),
Scanning Electron Microscope (SEM), Optical spectroscopy, X-ray Dif-
fraction (XRD), Infrared and Raman Spectroscopy [166].

The synthesis of a nanofluid is a key role task in researches. The
main goal of preparing nanofluids is to obtain a stable suspension with-
out any agglomeration in a specified period and temperature. The ag-
glomeration of nanoparticles in a nanofluid is a significant problem in
all nanofluid investigations. Two main methods involved with preparing
nanofluids are One-step and Two-step methods [167]. The purpose of the
mentioned methods is to generate good nanoparticle suspensions. The
unique heat transfer improvements by using nanofluids directly depend
on the quality of the suspension. The quality of nanofluid is a function
of the synthesis method and the homogeneity of nanoparticles in the
base fluid [166]. Overcoming the mentioned problems has become more
important in higher nanoparticle concentrations [168].

In the One-step method, in a single process, the nanoparticles are
formed and dispersed in the base fluid. In the Two-step method, nanopar-
ticles are prepared in the first step and after that, in the second step, the

prepared particles are dispersed in a fluid [167]. From an economical
point of view, the Two-step method takes lower costs [169]. In the two-

Table 1.
Some of the reported synthesis studies of nanofluids
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Fig. 4. Thermal Conductivity of various fluids at 25°C [211].

step method, nanoparticles can be synthesized and dispersed in base flu-
id chemically or mechanically [170]. In chemical dispersion, surfactants
are commonly are added to the fluid, whereas in mechanical dispersion,
sonication is often employed to disperse nanoparticles [171]. Besides,
there are other significant factors that have remarkable effects on a sus-
pension’s quality. According to various studies such as Sonawane et al.
[172], and Buonomo et al. [173], particle size and sonication time are

Synthesis

aethod Authors Publish year Nanoparticle/Base fluid Particle size (nm) (VoIl?‘:Z‘ T)tri:lvlt% )
Eastman et al. [30] 2001 Cu/EG 10 0.3
Hong et al. [174] 2005 Fe/EG 10 0.55
One-Step Liuetal. [175] 2006 Cu/Water 75~100 0.1
Paul et al. [176] 2012 Ag/Water - 1
De Robertis et al. [177] 2012 Cu/EG - -
Choi et al. [178] 2001 CNT/Poly oil 25*50000 2
Murshed et al. [179] 2005 TiO,/Water 15 5
Meibodi et al. [180] 2010 CNT/Water 1-4 0.12
Lee etal. [181] 2011 SiC/Water <100nm 0.001-3
Two-Step Singh et al. [182] 2012 Al,O /EG&Water 130,211,300 0.25-1
Fazeli et al. [183] 2012 SiO,/Water 18 3.5-5
Zeinali Heris et al. [184] 2015 MWCNT/Water 10%*20000 0.55
Choudhary et al. [185] 2016 ALO,/Water 40 0.1-2
Irani et al. [186] 2018 GO/Water+tMDEA - 0.1 &0.2
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other critical factors that affect the dispersion level of nanoparticles and
lead to better thermophysical properties of nanofluids. Some of the syn-
thesized nanofluids utilizing one-step and two-step methods reported in
various articles are presented in Table 1.

2.2. Stability of nanofluids

Synthesizing a stable and durable homogenous nanofluid has always
been challenging for researchers due to the agglomeration of nanoparti-
cles as a result of the van der Waals forces [187]. To avoid particle ag-
glomeration, some physical and chemical methods have been proposed
and investigated [165]. The most common method that researchers use
while confronting agglomerations is adding surfactants which is a chem-
ical method [188]. The addition of surfactants makes hydrophobic ma-
terials disperse in an aqueous suspension better than normal situations
[189]. There are many types of surfactants such as Gum Arabic, CTAB,
SDS, SDBS, NADDBS, CMC, HCTAB, TX-100, etc. [190]. Besides,
the fraction of surfactants that are used for making a suspension stable
is very important. If used less than the limit, causes inadequate stability
and if overused, causes agglomeration of nanoparticles in the suspension
due to the osmotic pressure [191].

Also, there are other methods that enhance the stability of nanofluid.
Li and Xuan [192] suggested the ultrasonic waves for increasing the
stability of nanofluids in addition to surfactants. Peng et al. [193] defined
and studied the important factors of the preparation of stable nanofluids.
They showed that the dispersion method, volume fraction of nanoparti-
cles, the viscosity of the base fluid, the value of pH, density of nanofluid,
type of nanoparticles, and size of nanoparticles in conjunction with ul-
trasonic waves affect the stability of nanofluids.

The main purpose of all methods is to prevent particle clustering by
changing the surface properties of particles, which results in a stable
nanofluid. An ultrasonic bath, which is used widely by researchers [35],
is a powerful instrument for breaking the agglomerations. A conclusion
of researches, which has utilized an ultrasonic bath to prepare stable
nanofluids, is presented Table 2.

The stability of an aqueous nanofluid directly depends on electro-ki-
netic properties. The high surface charge density of the nanoparticles
may result in strong repulsive forces and consequently, bring up better
dispersion of nanoparticles in suspensions [35].

In the isoelectric point (IEP), the concentration ions that play a role
in zeta potential is zero. In the isoelectric point, surface charge density

is equal to electron charge density and because of that, the zeta potential

is zero. The pH value has to be considered to attain the isoelectric point
[206]. It has been observed that pH control makes a nanofluid to be
stable for a long time [207]. By controlling the repulsive force between
nanoparticles, the zeta potential is decreased to zero at a particular pH
value at the isoelectric point and it is a negative problem for the stability
of nanofluids [35]. The pH deviation of a prepared suspension from the
isoelectric point increases the stability of colloidal particles and causes
the changes in the thermal conductivity of the nanofluid [208]. Jorge et
al. [209] investigated the MWCNT/water nanofluid at pH values of 2
and 5.5 and reported that the mentioned nanofluids were stable because
of the deposition of amines on the MWCNT surface. Zareei et al. [210]
evaluated the stability of Al,O,/water nanofluid at various pH values and
showed that the Al,O,/water nanofluid had the highest stability at pH=4
while pH=10 showed less stability. Each type of nanoparticle became
stably dispersed at its optimized pH value that leads to optimum thermal
properties. At an optimum pH, the repulsive force between nanoparticles
increases and prevents the sedimentations and agglomerations [211].

Among the various methods to evaluate the stability of nanofluids
the most common techniques are: zeta potential, absorbency, stratifi-
cation observing, sedimentation observing, and particle size-changing
[212]. When almost all of the particles have high zeta potential values,
there is no tendency for agglomeration and consequently, the suspension
becomes stable [213]. In the zeta potential method, a Laser Doppler Ve-
locimetry (LDV) records the movement of nanoparticles under an elec-
trical field. Nowadays most of the investigations about the stability of
nanofluids are done with the zeta potential method [181]. The acceptable
values of zeta potential are shown in Table 3 [214]

2.3. Thermophysical properties of nanofluids

The main idea of the synthesis of nanofluids is to enhance the
thermophysical behavior of the base fluids. Thermal properties of the
working fluid play an essential role in the heat transfer rate of a ther-
mal system. The working fluid commonly has weak thermal properties,
therefore the improvements of these properties increase the efficiency
of thermal devices, reduce costs, and results in more compact and min-
iaturized devices [20]. The properties of some of the base fluids that
are utilized commonly in various investigations are presented in Table
4 [187, 215-218]. The dispersion of nanoparticles in the base fluid is
one of the attractive methods in the enhancement of the fluid properties.
Many factors affect the thermophysical properties of nanofluids that are
presented in Fig. 2 [219]. Kolade et al. [220] investigated the effect of

Table 2.
Investigations of nanofluid stability
Authors Publish year Nanoparticles/Base fluid Particle size(nm) Fraction Sedimentation surfactant
(vol% or wt%)
Patel et al. [194] 2005 AlOs/Water 11 0.8 - -

Lee et al. [195] 2006 CuO/Water 25 0.3 - -

Zhu et al. [189] 2007 Graphite/Water 20 0.5 - PVP

Lietal. [188] 2008 Cu/Water 25 0.1 - SDBS

Chen et al. [196] 2009 Titanate NT/EG 10*100 0.5-8 >2 months -

Yu et al. [197] 2010 FesOa/Kerosene 15 0.1-2 - Oleic acid
Chandareskar [198] 2010 AlOs/Water 43 033-5 - -
Aravind et al. [199] 2011 MWCNT/Water - 0.005-0.03 - -
Shanbedi et al. [200] 2012 MWCNT/Water 15*10000 0-1.5 >6 months -
Shanbedi et al. [201] 2013 MWCNT/Water 15*%10000 0-1 >6 months GA

Anmiri et al. [202] 2015 Graphene/Water 3.74*3000 0-0.1 1 month SDBS

Mustafizur [203] 2016 SiO2/Methanol 5-15 0.005-0.05 24 hours -

Cacua et al. [204] 2017 ALOs/Water - 0.1-0.5 30 days SDBS-CTAB
Krishnan et al. [205] 2019 MgO/Water-EG - 0.05-0.6 20 days -
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Table 3.
The acceptable values of zeta potential [70]
Zeta potential (mv) Stability

0 No stability or little stability
15 Some stability but settling lightly
30 Moderate stability
45 Good stability with settling possibility
60 Excellent stability

the particle fraction on the effective thermal conductivity of Al2Os-water
and MWCNT-water nanofluids and reported 6% and 10% enhancement
at 2% and 0.2% fractions, respectively. Das et al. [221] reported that
temperature increment results in higher thermal conductivity of nanoflu-
ids. Also, Shou et al. [222] indicated that an increase in thermal conduc-
tivity had a linear proportion with temperature. Chon et al. [223] studied
the effect of nanoparticles size on the thermal conductivity of nanofluids
for spherical nanoparticles with the size of 10-50 nm and showed that
the thermal conductivity of nanofluids increased with a decrease in par-

ticles size.

2.3.1. Thermal conductivity

In the last decades, the thermal conductivity of the fluids containing
nanoparticles has become a point of attraction for many researchers and
various numerical and experimental studies have done about nanofluids
[220]. The results of various studies show that the thermal conductivity
of nanofluids improves by diverse factors like volume fraction, nanopar-
ticle type and size, the thermal conductivity of nanoparticles and base
fluid, temperature, viscosity, Brownian motion, pH value, and the qual-
ity of dispersion[224]

The Brownian movement of nanoparticles at nano-sized levels and
molecular scales plays a key role in the thermal behavior of solid-fluid
suspensions including nanofluids. The increases in thermal conductivity
of nanofluids are related to local convections that caused by Brownian
motions of nanoparticles [225].

Solid materials have generally higher thermal conductivities than
fluids. Metals possess considerably high thermal conductivity, however,
some types of advanced ceramics offer considerable thermal conductivi-
ties such as ZrB,, AIN, BeO, and TiB, [226-231]. Since the thermal con-
ductivity of solid nanoparticles is very higher than fluids, it is expected
that dispersing nanoparticles in a base fluid enhances the thermal con-
ductivity and the heat transfer functions of the fluid. The approximate
thermal conductivity of some materials and base fluids is shown in Fig.
3 and Fig. 4, respectively [211].

The experimental studies exhibited that nanofluids do not conform
with general correlations and the thermal conductivity of nanofluids de-
pends on many factors that some of them are still unknown. Jana et al.
[232] studied various nanofluids and showed that the Cu-water nanofluid
brings up to 74% enhancement in thermal conductivity. Xie et al. [233]
investigated the effect of using CNT, CuO, and Al O, nanoparticles in
a base fluid and showed that regardless of the type of the base fluid,
Carbon nanotube suspensions demonstrated better thermal conductivity
values in the same volume fractions [233]. Wang et al. [234] compared
the diverse data for Al,O, and CuO nanoparticles by considering water,
vacuum pump fluid, engine oil, and ethylene glycol as base fluids and
showed that the thermal conductivity of nanofluids increased with a de-
crease in nanoparticle size. Abareshi et al. [235] investigated the thermal
conductivity of Fe,O,-water nanofluid and highlighted that the thermal
conductivity of nanofluids improved with increment in temperature due
to the increases in the activity of molecules to transfer energy. Lai et al.
[236] and Zhu et al. [237] claimed that the pH value is very effective on
the thermal conductivity of suspensions. In Table 5 found., the thermal

Table 4.
Thermophysical properties of common base fluids that utilized in nanofluids [187,
215-218]

Base fluid cp (J/kg.K) k (W/m.K) p (kg/m?) p (N.s/m?)

Distilled water 4184 0.599 998 1.00E-04
Ethylene 2383 0.25 1117 2.20E-02
Glycol
Engine oil 1881 0.145 888 8.40E-01
Propylene 4019 0.34 1036 4.20E-02
glycol
EG + water 3473 0.316 1094 28.00E-04
(X=0.5)

conductivity enhancement reported by some researchers is presented.

Many studies reported the enhancement of thermal conductivity by
utilizing and dispersing nanoparticles in the base fluid [220]. Although
the researchers presented many models to predict the thermal conduc-
tivity of nanofluids, however, comparing the experimental data with
theoretical models shows the need for more investigations to explain
the abnormal improvements in the thermal conductivity of nanofluids.

Maxwell [251] for the first time presented a mathematical model to
determine the thermal conductivity of a solid-fluid suspension by assum-
ing spherical shape for all solid particles as follow:

_ 2k 42k, ~ k)P "
eff — by
Tk, 42k, —(k, — kg

where ¢ is the volume fraction and k, and kp are the thermal conduc-
tivity of the fluid and particles, respectively.

Researchers also developed various mathematical models by con-
sidering different parameters that affect thermal conductivity. Hamilton
and Crosser [252] considered the shape of the particles and justified the
Maxwell model as below:

ok Dk (-1, k)
Lk (=D —(k, k) @

where n is the shape factor given as

nes 3)
174

v is defined as the sphericity of the solid particles. A series of mathe-

matical models considering the different involving factors are presented

by several researchers. A conclusion of various presented models sug-

gested by researchers is shown in Table 6.

2.3.2. Viscosity

The viscosity is a significant and important characteristic of all types
of fluids that shows the resistance of a fluid flow against shear stress.
Because of that, the viscosity has a great effect on the rheological and
thermal behaviors of nanofluids as a special type of fluids. The viscosity
affects the friction between the fluid molecules and the contact surface
of nanoparticles and plays a key role in fluid flow and heat transfer phe-
nomena. The pumping power and convective heat transfer rate are di-
rectly related to the value of viscosity [267].

The viscosity depends on various factors such as dispersing method,
nanoparticle diameter, nanoparticle type, temperature, and nanoparti-
cle concentration which the effect of concentration is more than other
factors [268, 269]. Ghazvini et al. [270] showed that the viscosity of
nanofluids increased by up to 20% in high nanoparticle concentrations.
Ding et al. [271] investigated the viscosity of carbon nanotube-water
nanofluid as a function of shear stress and indicated that the viscosity of
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Table 5.
The overview of the result of some studies on the thermal conductivity of nanofluids

Fraction

Particle size

Authors Publish year Particle/Base fluid (vol% or wt%) (nm) Additives Enhancement (%)
Xuan & Li [192] 2000 Cu/water 2.5-7.5 100 Laurate salt 22-75
Xie et al. [238] 2002 AL O, /water 1.8-5 60.4 - 7-21
3% at 30°C
Patel et al. [239] 2003 Ag/water 0.001 60-70 -
4% at 60°C
2-9% at 21°C
Das et al. [221] 2003 ALQO,/water 1-4 38.4 -
’ 10-24% at 51°C
Wen & Ding [240] 2004 Al O, /water 0.19-1.59 42 SDBS 1-10
Hong et al. [174] 2005 Fe/EG 0.2-0.55 10 - 13-18
Putnam et al. [241] 2006 Au/ethanol 0.01-0.07 4 Alkanrthiolate 0.3-1.3
4-12% at pH=3
Lee etal. [195] 2006 CuO/water 0.03-0.3 25 -
2-7% at pH=6
Lietal. [188] 2008 Cu/water 0.02-1 wt% 25 SDBS 10.7
Godson et al. [242] 2010 Ag/water 0.3-0.9 60 - 10-30% (50 to 90°C)
Kole & Dey [243] 2010 ALO,/water 0.001-0.035 50 Oleic acid 10.5%
0-7% at 10°C
1-10% at 30°C
Colla et al. [244] 2012 Fe 0, /water 5-20 wt% 67 - 5-11% at 50°C
3-15% at 70°C
Manna et al. [245] 2012 SiC/water 0.01-0.1 60 - 7.5-11.5%
Teng [246] 2013 ALO,/water 0,0.5,1,3 20 Chitosan 1-9% decrease
Amiri et al. [202] 2015 Geraphene/water 0.025-0.1 wt% 3.74*3000 SDBS Up t0 26.2
Sinha et al. [247] 2017 ZnO/water 0.1-5 - - 33
Micali et al. [248] 2018 CuO-water 2.5 - - Upto 18
Ranjbarzadeh et al. [249] 2019 SiO,/water 0.1-3 - - Up to 38.2
Riahi et al. [250] 2020 ALQO,/water 0.7 9 - 8.6

nanofluids increases with increments in concentration on the one hand
and also, decrements in temperature on the other hand. Zeinali Heris
et al. [272] showed that the viscosity value of CuO-water nanofluid is
greater than Al,O,-water nanofluid because of the bigger size of CuO
nanoparticles.

Nguyen et al. [273] investigated the effect of temperature, concen-
tration, and size of nanoparticles on the dynamic viscosity of AL O,-wa-
ter and CuO-water nanofluids. The results showed that the viscosity of
prepared nanofluids was a function of temperature and volume fraction
of nanoparticles.

A conclusion of experimental researches about the viscosity of nano-
fluids is presented in Table 7. Also, there are some mathematical correla-
tions for predicting the effective viscosity of nanofluids. A summary of
the significant viscosity correlations is presented in Table 8.

2.4. Convective heat transfer process in nanofluids

Using nanofluids in various devices is an effective method to reach
high efficiencies in the cooling procedure. In the previous sections, the
synthesis and some thermophysical properties of nanofluids have been
explained, however, convective heat transfer needs many studies about
the flow regime, heat transfer process, and other significant factors
[295]. The convective heat transfer coefficient of nanofluids increases
with increment in conductive heat transfer rate, intensification of turbu-
lence, stopping the growth of the boundary layer, etc. [24]. A decrease
in the thermal boundary layer can lead to the stimulation of the particles
around the wall and migration of the particles toward the center of the
duct and this subject will decrease the viscosity near the wall [296]. Nu-
merous studies have been performed to investigate the convective heat

transfer using nanofluids. A constant heat flux or constant wall tempera-

ture is usually considered as the boundary condition for studying the
heat transfer of nanofluids [297].

By using nanofluids, complicated behaviors such as Brownian mo-
tion, rotation of the particles, and micro-displacements of nanoparticles
emerge [297]. These mechanisms make it necessary to find new correla-
tions to cover the convective heat transfer of the nanofluids.

Jung et al. [298] investigated the Al,O,-water nanofluid in a micro-
channel with considering the laminar flow regime and showed a 32%
increase in the convective heat transfer coefficient in comparison with
used base fluids. Zeinali heris et al. [299] investigated the Cu-water
nanofluids in a tube with a laminar flow regime at constant wall tempera-
ture condition as a boundary condition and indicated that with increases
in volume fraction, the convective heat transfer coefficient values im-
proved as 45% at 2% volume fraction. Faulkner et al. [300] investigated
the convective heat transfer in a microchannel by utilizing CNT-water.
The results showed that the convective heat transfer coefficient improves
with an increase in volume fraction. Aravind et al [199] synthesized
the CNT-water nanofluids at 0.005% and 0.03% volume fractions and
showed that the convective heat transfer coefficient increases with an
increase in Reynolds number and volume fraction. Naraki et al. [301]
investigated the CuO-water nanofluid in a car radiator and presented an
8% enhancement in the heat transfer rate.

Several mathematical correlations are presented by researchers for
predicting the Nusselt number of single-phase fluids in a tube at laminar
and turbulent flow regimes. A conclusion of some correlations for the
Nusselt number is shown in Table 9.

2.5. Future Challenges

As the researches about nanofluid progress over time, many chal-
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Table 6.
A conclusion of models proposed for thermal conductivity of nanofluids

Reference Year Correlation

Dependent Param-
eters
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Continuation of Table 5

Reference Year

Correlation

Dependent Param-
eters

Li [263] 2008

Vajjha [264] 2010
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Table 7.
A conclusion of experimental studies on the viscosity of nanofluids
. . . Particle L. ST
Authors Year Particles/Base fluid Fraction . Additives Viscosity increase
size(nm)
Godson et al. [242] 2010 Ag/water 0.3-0.9 20 - 6-23% at 50°C
10-35% at 70°C
20-43% at 90°C
Aravind [199] 2011 MWCNT/water 0.005-0.03 - - 3-15% at 40°C
4-20% at 60°C
6-11% at 40°C
4-16% at 60°C
Colla et al. [244] 2012 Fe,O,/water 5-20 wt% 67 - 21-36% at 10°C
24-49% at 30°C
21-36% at 50°C
32-72% at 70°C
Syam Sundar et al. [274] 2013 Fe O, /water 0.2-2 13 CTAB 6.3-108% at 20°C
1.8-107% at 40°C
10-196.6% at 60°C
Shanbedi et al. [275] 2015 MWCNT/water 0.1 wt% 10*30000 GA Temperature increase led to lower
SDS viscosity values
CTAB
Chiam et al. [276] 2017 Alzoz/waterﬁ-EG 0.2-1 - - Up to 50%
Yashawantha et al. [277] 2019 Graphite/EG 0.2,0.8,2 <50 - 58% decrease by increasing tem-

perature (25°C-60°C)
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Table 8.

A conclusion of mathematical correlations for the viscosity of nanofluids

Authors Year Correlation Dependent parameters
Einstein [278] 1906 o =(1+2.50) 11, Volume fraction
c Volume fraction
Robinson [279] 1949 My = {1 + m] u Special heat capacity
y Volume fraction
: oA
Brinkman [279 1952 =
) SRR
(14 7.5(1-0) p Volume fraction
Eshelby [280] 1957 Hay = 450 7|t
o =0.333
' B - ﬂ - Volume fraction
Krieger [281] 1959 Uy =ty ( p ) Shear stress
" Particle packing
4 0333 Volume fraction
Frankel and Acrivos (Zj
082] 1967 Mo =1.125| =202 |y
1 - 7}
¢,
Volume fraction
4| ¢r*
Jeffrey et al [283] 1976 Moy =ty |3 +§
In (ij
¢
Particle diameter
He =1+ 2.5¢ + 4.5 3 Inter-particle spacing
Graham [284] 1981 Hyy h h h
R I R P
dp dp dp
2 Volume fraction
Chow [285] 1993 Ho _ {exp[z'w] " A¢2}
Hyy 1-¢) 1-4¢°¢,,,
Vol fracti
Pak and Cho [286] 1998 Hy = (108247 + 5450+ Dy, oume fraction
| 2 k_2 b —6 Volume fraction
Liu [287] 1999 Har _ [—_¢] +[ L ]¢+[ 2 jq}z
Hy P B P
n Volume fraction
Noni [288] 2002 Ha _ {1 + b(%} ] Bidimensional forces
Hiy ~ P
) U Volume fraction
Orozco and Castillo 2003 o _ 1+ 2.5¢ 4 6.17¢2
[289] Hy
Volume fraction
Nguyen [290] 2007 Har _ . 904014539
Hay
Volume fraction
Hyy _ 2
Bobbo [291] 2012 —_(1+a¢+b¢ )
Hor
I, Volume fraction
Aberoumand [292] 2016 L —1.15+1.061¢ —0.5442¢% +0.1181¢°
Hyr
o Uy Weight fraction
Karimipour [293] 2018 7 =0.995246-0.0002931197.w+0.125761w temperature
bf
Esfe [294] 2019 Hyy = 6.35+2.56¢—0.24T —0.068¢T +0.905¢° +0.0027T° Volume fraction

temperature
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Table 9.
A summary of correlations presented for Nusselt number
Author Year Correlation Conditions
Turbulent flow
n=0.3 for cooling
Dittus-Boelter [302] 1930 08 n=0.4 for heating
X n
Nu=0.023Re™ Pr 2500<Re<1.25%10°
0.6<Pr<160
d
0‘0668(4) RePr Laminar flow
Hausen [303] 1943 Nu=3.66+ — Const. wall .
3 onst. wall temperature
1+0.04[( /L) RePr]
Lyon [304] 1952 Nu =7+0.025(Re Pr)"® Const. heat flux
Lubarsky and Kaufman [305] 1955 Nu =0.625Re* Pr® -
-5
2200 —(Re/ 365 1
Churchill and Ugasi [306] 1972 Nu'® = N +| exp| 220-Re/365) 1 -
Nu, Nu,
Notter-Sleicher [307] 0<Pr<10*
1972 10*<Re<10°
Nu=5+0.015Re"* pr®*¥
10*<Re<10?
Pak and Cho [286] 1998 6.54<Pr<12.33
Nu =0.021Re*® Pr®? 0<¢<3%
Nu =0.086Re"* Pr"* Const. heat fl
Maiga et al. [308] 2004 " ¢ onst. heat flux
Nu =0.28 Re™** pro3¢ Const. wall temperature
X . Re<2300
Suresh et al. [309] 2012 Nu=0.031(RePr)"** (1+¢)*" y
0<4<0.1%
3000<Re<22000
Sundar et al. [310] 2012 Nu=0.02172Re" Pr®°(1+ ¢)0~5181 3.72<Pr<6.5
0<$<0.6%

lenges in nanofluid studies and applications still exist. Firstly, the syn-
thesis of nanofluids must take lower costs on the one hand and give more
stable nanofluids on the other hand. So, there is a critical need for more
studies about the mechanisms and methods to earn information about the
unique behavior of nanofluids and give more stable nanofluids that make
them more commercial and applicable.

Secondly, many mathematical and experimental correlations are
presented to predict the thermal and rheological properties of nanoflu-
ids. Some of them have properly validated, however, all mechanisms
involved in the heat transfer of nanofluids are still unknown and unex-
plored. Considering optimal parameters for prospecting the behavior of
nanofluids is very necessary to extract the maximum potential of nano-
fluids.

From the heat transfer aspect, nanofluids have developed in many
heat transfer processes and instruments such as medical sciences, bio-
mechanics, electronics, etc. [311]. Researchers are studying and inves-
tigating the various facets of the nanofluids to make nanofluids more
reliable and marketable [312].

Nowadays, nanofluids are utilizing in heat transfer and other fields
widely. However, this unique type of suspension is still under the inves-
tigation to be more applicable. Finding ways to give more stable and
high-efficiency nanofluids will lead to a revolution in the heat transfer in
industry and many other fields.

3. Conclusion

Cooling performance is a major demand of many industries and be-
cause of that, the need for fluids with enhanced thermophysical proper-

ties and reliable stability is more vital than the past. The present review
gives a piece of summarized information about the nanofluids and heat
transfer phenomena in nanofluids and make nanofluids more under-
standing and displays the recent developments in nanofluids.

Many rheological and thermal properties of nanofluid have taken
into account to make nanofluids more applicable. Although, the ther-
mal conductivity, viscosity, stability, and heat transfer processes are re-
viewed in the present paper. Also, summarized experimental studies and
mathematical correlations about the mentioned properties are brought
in the present review. The parameters that affect the thermal behavior
of nanofluids are particle size, volume and weight fraction, fluid type,
nanoparticle type, temperature, viscosity, stability, and preparation
method. Nanofluids have a huge potential to be used in many fields and
industries but, there is more need for study on the hidden and unknown
mechanisms of nanofluids to make them more applicable. Also, more in-
vestigations are needed to simplify the preparation methods and enhance
the thermos-physical properties of nanofluids.
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