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1. Introduction

These days, nanomaterials, due to their highly attractive properties, 
have been broadly used in various types of applications, such as life 
sciences, the environment, information technology, etc. [1-5]. There 
are various methods to produce nano-sized materials, including sol-gel 
[6-9], ball-mill [10-13], co-precipitation [5], self-propagating high-tem-
perature synthesis [14, 15], electrospinning [4, 16], etc.

Recently, the application of graphene has been gained increas-
ing attention by researchers because of its unique properties [17-21]. 
Graphene, a single layer of graphite, is a basic block of sp2-bonded car-
bon for graphitic materials such as graphite [22-25], fullerene [26-28] 
and carbon nanotubes [29-38], which has both unique mechanical and 
physical properties making it a promising material for applications in 
nanotechnology [39-44]. A stable graphene sheet was discovered by No-
voselov and Geim (2004) for the first time [45].

The value of the thermal conductivity of graphene is even more than 
diamond, and it has a high potential in increasing the convective heat 
transferring ability of a nanofluid [46-48]. The usage of graphene into 
the lubricant improves its potential for heat removal from a system, be-
cause of the significant role of graphene in increasing the amount of 

thermal conductivity. Recently, graphene has been introduced as the 
thinnest solid lubricant by some researchers with a mechanism of su-
perlubricating, which could be confirmed by atomic force microscopy 
(AFM) [49, 50]. Graphene has been introduced by Bermen et al. [51], 
as a promising candidate for using in steel lubricants. The tribological 
properties of graphene have been investigated, and the results have 
shown excellent properties of graphene compared to the nanoparticle of 
graphite or carbon nanotube (CNT) [52].  

It can be used in many applications such as solar cells [53, 54], hy-
drogen storage [7, 55], sensors [56-58], detectors [59], transistors [60] 
and other electronic devices in many applications due to its good electri-
cal property [19, 21, 61-68], which makes it a good candidate to be used 
in lots of composites [69, 70]. Therefore, recently, many investigations 
have been focused on graphene and graphene nanolayer by numerous 
physicists, chemists, and material scientists [71].

Producing graphene at a large scale with uniform thickness has been 
one of the most important subjects for many researchers and scientists 
[72, 73]. Many controlled synthesis routes, viz. chemical vapor depo-
sition (CVD), laser reduction, and wet chemical routes have been pro-
posed to prepare a large amount of graphene [63, 74-78], with suitable 
physicochemical properties [79-81]. However, these processes should 
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In this study, graphite powder was used to prepare few-layer graphene sheets through shear milling. During the 
process, graphite was well dispersed in double distilled water as a lubricant and sodium dodecylsulfate (SDS), 
followed by shaking and milling under low energy. The exerted sheer force led to the continuous delamination 
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be low cost and simple e.g. mechanical exfoliation of graphite, produc-
ing a large area graphene sheet.

Several methods have been used for producing layered materials, 
like graphene, with no unwanted defect or functionalization. Mean-
while, mechanical exfoliation is the best option among these methods 
that is very simple procedure.

The delamination occurs via applied shear and compressive forces 
on the particles, in which the shear force should overcome the van der 
walls force existing between the sheets. Accordingly, there are several 
reports for preparing graphite nano-sheets or graphene by graphite exfo-
liation through three roll milling or shear ball milling [77, 82, 83].

However, all these studies have used graphene powders in the form 
of solid additive, in which the obtained suspension had low stability. 
Meanwhile, commercial fluids require high stability for a long time [84]. 
To overcome this limitation, functionalized graphene sheets were pre-
pared e.g., aromatic or long alkyl chain functionalized graphene sheets 
dispersed in non-polar oil medium [85, 86]. Zhang et al. [87] used poly-
alphaolefin-9 (PAO) and dispersed oleic acid-modified graphene sheets 
in it. Although long-term storage stability is not achieved, graphene 
showed good wear resistance.

One of the major challenges in the graphene research field is how 
to count the number of atomic layers. Although optical microscopy can 
show graphene with certain layers on a silicon substrate, it is difficult 
to identify the number of layers of graphene accurately [62]. Therefore, 
although there are many reports about graphene nanolayers, insufficient 
reports have been issued about the preparation of the nanolayers via 
shear milling procedure.

In order to apply effective exfoliation, the stirred-media bead milling 
system can be utilized that has more shear forces other than impact one. 
Peukert et al. [75] used this method to prepare scalable graphene in a 
water medium along with an ionic surfactant.

Thus, in this paper, the synthesis of nanolayers via shear milling pro-
cedure is presented instead of the ball milling process to achieve nano-
layer graphene flakes and stable dispersion of graphene in the medium. 
Scanning electron microscope (SEM) and optical microscopy (OM) 

were also used to characterize thin flakes on Si substrate. To provide 
well-dispersed graphite in water, sodium dodecyl sulfate (SDS) was 
used as the surfactant. 

2. Experiment Procedure

High purity graphite powder with an average particle size of 200 µm 
and SDS were purchased from Merck Co. (Germany). Two SDS-con-
taining and SDS-free mixtures with 0.25 gr graphite and 200 ml deion-
ized water were separately prepared and a flat alumina disc with 2cm 
diameter and 4mm thickness was put in the flask of each mixture. The 
flasks were shaken with orbital flask shaker for 60 hours at a speed of 
380 rpm to keep the disc flat. Then, the samples were spin-coated on the 
Si substrate and dried at 80 oC for 2 h. 

Raman spectra analysis was done with SEKI 750 Raman analyzer 
to investigate the sample in argon ion laser (514.5 nm line). The JEOL 
2100 electron microscope was used for TEM analysis of samples on 
a carbon-coated copper grid. The optical microscopy (OM) and SEM 
(model: LEO 1450 VP) images of the samples were captured, and data 
of energy-dispersive EDX (model X-MAX) for different areas were col-
lected. 

3. Results and Discussion

Since graphite and graphene flakes are hydrophobic and tend to ag-
glomerate in water, an ionic surfactant like SDS can hinder the coagu-
lation and restacking of particles. The resulting suspension of graphite 
with SDS is stable in water to carry out the rest of the process. During 
delamination in the stirring media mill, the transferred energy from the 
grinding media causes sheets to be fractured, and mostly small frag-
ments of graphite can be present in the ultimate suspension. During 
milling, SDS is adsorbed on the surface of the particles and creates a 
strong repulsive force that prevents the agglomeration and restacking of 
delaminated sheets. The optical microscopy results, which are presented 
in Fig. 1, show that the particle size of graphite flakes decreased to less 
than 50 µm in both mixtures, after mechanical treatment for 60 h. Fig. 
2 represents the SEM images of graphite fragments on the surface of 
the silicon substrate. The presence of SDS leads to a significant change 
in the shape of particles after shear milling for 60 h (Fig. 2). It is worth 
noting that water allows the graphene planes to slip easily and SDS pre-
vents the agglomeration of the particles and keeps the layers apart from 
each other. Applying low energy through shear milling of the graphite 
particles induces shear on graphene layers without causing high crystal 
defects [63].

As can be seen in Fig. 2(b), the particles obtained after 60 hours of 
milling have flak-like shape. Fig. 3 illustrates the SEM micrographs of 
thin flaky graphite. The accurate thicknesses of the thin sheets are diffi-
cult to estimate. Three areas are highlighted via arrows on in Fig. 3(a).

Energy-dispersive X-ray analysis (EDX) of point 2 is shown in Fig. 
3(b), which contains C, O, and Si as well as a negligible amount of Na 
element. This proves the presence of carbon and silicon existing in the 
graphene and substrate, respectively. Fig. 4 shows various intensities 
of carbon at mentioned areas (Fig. 3(a)) after deposition on a silicon 
substrate. It is evident that the minimum intensity of C level corresponds 
to the layer with a minimum contrast (point 1), which refers to the very 
thin layers of graphene.

The transmission electron microscope (TEM) image of nanolayers is 
shown in Fig. 4. It can be seen that several dark layers are superimposed 
on each other. This denotes that several graphene nanolayers are stacked.

In order to distinguish the graphene from graphite and determine the 
number of layers, Raman spectroscopy was performed. D-band about 

Fig. 2. SEM micrographs of graphite particles after 60 hours milling (a) without 
SDS and (b) with SDS.

Fig. 1. Optical microscopy images of graphite particles after 60 hours of shear 
milling (a) with SDS and (b) without SDS.
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1350 cm-1, G-band about 1580 cm-1 and 2D-band about 2700 cm-1 cor-
respond to graphitic materials. Fig. 4 illustrates the Raman spectra of 
the materials. The G-band at 1581 and 1573 cm-1, and D-band at 1356 
and 1352 cm-1 for graphite and graphene samples, respectively, prove 
almost the graphitic nature of the samples. In addition, the ordered and 
increased density of sp2 carbon is clear for the milled sample. It is re-
ported that the 2D symmetry, as well as its full width at half maximum 
(FWHM), can distinguish the graphene and bulk graphite [88]. Further-
more, the 2720 cm-1 is ascribed to a 2D peak for graphite that depicts the 
formation of few layers as well as the delamination of a few layers or 
monolayered graphene.

Besides, a single 2D peak was found in many places in the diluted 
film. On the other hand, the graphitic nature of the peak was also found 
in some places. Thus, it can be concluded that both multilayers and sin-
gle-layered graphene sheets are formed.

  
4. Conclusions

Multilayer graphene sheets were synthesized by simple surfactant-as-
sisted pure shear milling at ambient temperature. Water and SDS would 
accelerate the peeling-off process, and the SDS ionic surfactant hinders 
the agglomeration of graphite flakes. Optical microscopy showed the 
size reduction caused by mechanical energy. In addition, SEM and TEM 
images showed that the grinding media transferred enough energy to 
overcome the Van der Waals forces among the graphene sheets. The 
thickness of the achieved multilayer graphene sheet was estimated to 
be nano-sized.
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