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ABSTRACT

ARTICLEINFORMATION

In this study, nanostructured (Fe (Ni, ), .

Cu (x=0,0.5, 1.5, 3 and 5) powders were synthesized via mechani- Article history:

cal alloying process. The obtained phases, microstructure, and magnetic properties of these alloys were studied Received 13 September 2019

by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and vibration sample magnetometer Received in revised form 25 October 2019

(VSM). XRD results indicated that after a suitable time of milling, Ni and Cu were homogeneously distributed in  Accepted 3 November 2019

the Fe matrix, and (bce) a-(Fe(Ni-Cu)) solid solution was obtained. It was found that by increasing Cu content in

the alloy, work hardening increased, and thus the size of grains decreased while the internal micro-strain increased. Keywords:
Also, morphological observations indicated that the addition of Cu led to the formation of finer particles. Also, Nano-crystalline alloys

VSM analysis showed that the addition of Cu into Fe-Ni alloys lowered Ms. On the other hand, the coercivity Mechanical alloying

increased by increasing copper content up to 1.5 at. %.
©2019 JCC Research Group.
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1. Introduction

Recently, nanostructured materials have attracted great attention
due to their excellent and unique electrical, magnetic, optical, catalytic,
mechanical, and biological properties for various applications [1-11].
Several techniques including electrodeposition, rapid solidification [12-
14], gas condensation, solid-state processing like friction stir welding
(FSW) and mechanical alloying (MA) have been utilized to make
nanostructured materials [15].

Among various techniques for fabricating such materials [16-19],
it has been found that the solid state processing have some advantag-
es in comparison with the convectional casting or rapid solidification
methods [20-23]. This method, as a solid-state and non-equilibrium
technique, is capable of producing a wide range of microstructures con-
taining nano-crystalline supersaturated solid solutions, quasi-crystalline
intermediates and amorphous phases [15, 20, 21, 24]. Also, in contrast
to other new techniques such as liquid quenching (or melt-spinning), the
MA process is a controllable process and operates at low temperatures as
well as having the capability of large scale production [25-30].

During the first stages of the MA process, the impression force of the
balls can deform the powder particles plastically and create new surfaces
allowing the particles to bond together and thus results in an increment
in the size of the particle [31]. For hard powders like nanosilica, the
FSW method could be used for the production of composite-based nano-
structures [32], but for ductile powders that tend to agglomerate, the
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ball mill acts better than FSW. Therefore, a wide range of particle sizes
develops and the composite particles have a layered structure containing
blends of the starting constituents. Further deformation, leads to strain
hardening and hence fracture of particles by a fragmentation of frag-
ile flakes and\or fatigue failure [33-36]. It is estimated that in the first
few minutes up to an hour, the lamellar spaces typically become small
and the crystallite size becomes nano-sized. After milling for a while,
steady-state balance is obtained, between the rates of the welding and
fracturing, at the same time because of the accumulation of strain ener-
gy, the particles reach a maximum hardness [20, 37]. As a result of the
increased amount of cold working, the number of crystal defects (dislo-
cation, vacancies, grain boundaries, stacking faults, etc.) increases with
time and thus diffusivity of solute elements increases [38]. This leads to
an increment in the defects and dislocations density which reduces the
activation energy for diffusion. Hence, cold weld and fracture recurrence
of powders in MA process make diffusion easier [39].

Iron is a good ferromagnetic material with a low resistivity that leads
to large eddy current loss [40]. In addition, Fe-based nano-crystalline
materials exhibit very suitable soft magnetic properties [41, 42], as well
as high magnetization and low coercivity [43]. This makes them good
candidates for several applications like magnetic sensors, magnetic
clutches, magnetic shielding, etc. [44].

Magnetic iron-nickel alloys, generally called permalloys, are of ex-
cessive attention due to their magnetic properties, which makes them
good candidates for use in automotive and nano-magnetic sensors [45-
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Fig. 1. X-ray diffraction pattern of (a) powder mixture before milling and after 72
h milling (b) FNC (c) FNCO0.5 (d) FNC1.5 (d) FNC3 (e) FNC5.
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Fig. 2. Crystallite size as a function of copper content after milling for 72 h.

47].

Also, it is reported that a small amount of copper to Fe-Co alloys,
leads to the grain size decrease and recovers some of the most important
soft magnetic properties. Although there are several studies about the
addition of various elements to Fe-Ni alloys, there is no report about
the addition of Cu to this system. Accordingly, the aim of the present
work is to investigate the effect of Cu doping on the microstructural and
magnetic properties of nanocrystalline Fe Ni jalloys.

2. Materials and methods

In this study, Fe, Ni, and Cu powders with an average particle size
of 15 um, 10 pm and 63 pm, respectively, were supplied from Merck
Co. The purity of Fe, Ni and Cu powders was 99.5%, 99.9% and 99.9%,
respectively.

Firstly, the steel vials of the ball mill were loaded with special
amounts of powders, in which the ball to powder weight ratio was about
20:1. Two kinds of stainless steel balls with a diameter of 20 and 10
mm were used to increase the welding and fracturing processes [48] and
prevent the formation of the close-packed array [20].

The powders were mechanically alloyed in an inert (argon) atmo-
sphere through a planetary ball mill (Fritsch, Pulverisette 4). Common
milling speed of 350 rpm and milling time of 72 h was employed. Five
samples of (Fe,Ni ), ., Cu (x =0, 0.5, 1.5, 3 and 5) system were pre-
pared with different copper contents (Table 1).

The milled powders were characterized by X-ray diffraction analysis
(XRD), which was carried out by a Philips X’pert High Score diffrac-
tometer (Brukers D8 System Germany) using Cu ko (A = 0.1542 nm).
For all the XRD investigations, an angular range (20) of 20° — 90° was
used. The crystallite size and the internal strain were determined by the
Williamson- Hall method (Eq. 1) as below [49, 50]:

Pcos = 2esinf + 0.9 % (@))]

where is the full-width at half-maximum (FWHM) of a diffraction
peak, 0 is the Bragg angle, D is the grain size, € is the lattice strain,
and A is the X-ray wavelength [S1, 52]. The XRD peaks were fitted by
four-variable Gaussian functions using the sigma plot V.12.0 software. 3
can be determined as follows (Eq. 2):

Internal strain (%)
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Fig. 3. Lattice strain change after 72 h milling for the samples with different
contents of Cu.

B* =B — B2 ®)

where B_ is the instrument broadening and B is the measured half-
width broadening.

The morphology, microstructure and particles size of the powder
were obtained by scanning electron microscopy (SEM) test via a Philips
XL30 instrument. The mean particle size of about 350 particles was cal-
culated by image analyzer software of Clemex version V 3.5. The mag-
netic properties of the milled powder were measured at room tempera-
ture by using vibrating sample magnetometer (VSM) at the maximum
field of 10 kOe.

3. Results and discussion
3.1. Microstructure

Fig. 1 shows the X-ray diffraction patterns of the mixture of initial
powders and mechanically alloyed samples after milling for 72 h. It can
be seen that the XRD patterns of the samples before milling have only
the peaks corresponded to Fe, Ni, and Cu elements. On the other hand,
after 72 h milling, there was no trace of Ni and Cu peaks in the XRD
patterns. Reactions finished in the vial before milling completion and the
final product was 100% solid solution of a-Fe(Ni-Cu). Since the atomic
diffusion is time-dependent, sufficient milling time is required to obtain
the final products. By increasing the Cu content, the diffraction peaks be-
came broader and less intense. This represents the continuous decrease
in the crystallite size and the introduction of lattice strain.

This broadening is due to the second-order internal stress that af-
fects the crystals at the macroscopic level and leads to the broadening
of diffraction peaks [53, 54]. Also, the decrease in peak intensity can
be attributed to different lattice parameters of Ni and Cu, i.e., the solid
solution is formed [55] and induced strain is caused by the plastic de-
formation [56]. After milling for 72 hours and subsequent increase in
the Cu content, it was observed that the peak corresponding to the (110)
phase alpha-Fe bcc, has been shifted towards lower angles. The reason
is that by increasing the amount of copper, more copper is dissolved in
the iron structure that leads to the change in lattice parameters. Also, the
iron peaks are shifted toward lower angles which is due to the entrance
of Ni and Cu atoms to the Fe structure that leads to formation of solid
solutions of (Ni)-Fe and bcee Fe-(Ni, Cu). Kaloshkin et al. [57] showed
that the milled alloy powder of Fe-10% Ni showed only the bce phase.
In addition, the slight shift may be caused by first-order internal stress at
a macroscopic level by changing the lattice parameter [54, 58].

Table 1.
Different compositions of (Fe,Ni ), Cu system.
Sample Cu content Code

1 0 FNC
2 0.5 FNCO0.5
3 1.5 FNCI1.5
4 3 FNC3
5 5 FNC5
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Fig. 4. Variation of lattice parameter after 72 h milling of samples with different
contents of Cu.

Repeated fracture and welding of particles having large contact sur-
faces are reduced at ambient temperature, which leads to the formation
of solid-solution during the mechanical alloying [56]. Moreover, the
density of defects increased during the severe deformation while the dif-
fusion distance decreased which provides suitable diffusion paths for Ni
and Cu atoms in the iron lattice [20, 59].

Fig. 2 represents the effect of copper content on the crystallite size of
milled alloys. It can be noticed that by increasing Cu content, the crys-
tallite size of alloys decreased from 18 to 8 nm. This can be related to
the solubility of Cu atoms in the iron structure and its hardening effect.
Smaller crystallite size would lead to higher strength and hardness [60].

It can also reduce the grain size of powders that occurs during se-
vere plastic deformation that results in strain hardening [61, 62] [63].
Hamzaoui et al. [64] showed that by adding 10% nickel to iron, its crys-
tallite size decreased to 10.4 nm after milling for 96 h. At the first stages
of MA, a great amount of crystal defects e.g. dislocations are created. At
longer milling time, higher dislocation density is formed which might
lead to the formation of new boundaries inside nanoscale crystals [65].

Fig. 3 demonstrates the internal strain variation of Fe-(Ni, Cu) struc-
ture for different Cu contents after 72 h milling. As it is illustrated, by
increasing the amount of copper content, a great increase was observed
in the rate of internal strain at first but, at 1.5 at. % Cu, the amount of
internal strain became a plateau.

Generally, the increase in micro-strain value might be due to the se-
verely cold working and plastic deformation of powders. Commonly,
during mechanical alloying defects are formed in the interface of grains
[60, 66-69]. The increase in strain level has corresponded to high dislo-
cations’ density [70].

The volume fraction of grain boundaries (fgb) in polycrystalline ma-
terials can be estimated as below:

f,=1-1, 3)

where fgis the grain volume fraction given by:

D-d)®

= 5 @

where D represents crystallite size and d is the effective thickness of

Table 2.
The volume fraction of grain boundaries for the samples with various contents
of copper.
Sample D (nm) F,, (%)
FNC 18 12
FNCO0.5 15 14
FNC1.5 12 18
FNC3 10 21
FNCs5 8 26

the grain boundary [65, 71, 72].

Table 2 lists the changes in grain boundaries’ volume fraction versus
Cu content after 72 h milling. From table 2, it is obvious that as the cop-
per content increased, the crystallite size decreased while fgb increased.
This is because of the grain boundaries’ effect on the movement of dis-
locations.

Fig. 4 shows the variation of the lattice parameter (ao) with different
copper contents after 72 h milling. According to the figure, the lattice
parameter increased by increasing Cu content and reached a plateau at
5 %. This can be due to the saturation of Cu atoms in the Fe structure.
Furthermore, the lattice expansion could be attributed to the dissolution
of copper with a higher radius into the interstitial sites [73]. However, it
could be due to the severe plastic deformation of the powders during MA
[74], in which the dislocations are formed as well as sub-boundaries.
This leads to faster diffusion of Cu into the Fe structure. Accordingly,
during the mechanical alloying operation, lattice parameter difference,
and concentration of defects such as dislocations and vacancies, result in
an increment in the lattice parameter [68].

3.2. Morphology and Particle Size

Fig. 5 depicts the SEM micrographs of powder of all samples after
72 h milling. The relating average particle size of the powders is shown
in Fig. 6. Accordingly, by increasing the content of copper, the average
particle size decreased. The minimum average particle size was obtained
about 3 um for 5 at. % of Cu. Powders became finer and particle size
distribution was uniform with spherical and equal size shapes. It can
be seen that the MA processing time was high enough to decrease the
particle size distribution. Also, the powder had an almost spherical shape
and the addition of Cu makes the particles more brittle which may cause
higher grinding of powder and finer particles.

3.3. Magnetic properties
3.3.1. Saturation Magnetization

Fig. 7 depicts the variations of saturation magnetization after 72 h,

Fig. 5. SEM images of powders milled for 72 h containing (a) 0, (b) 1.5, (¢) 3, and (d) 5 at.% Cu.
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Fig. 6. Average particle size of the powders for samples with different amounts of
Cu after 72 h milling.
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Fig. 7. Saturation magnetization changes after 72 h milling for the samples with
different contents of Cu.
for the milled samples with different contents of copper. It can be seen

that the magnetization decreases slightly with increasing the Cu content
that can be attributed to the diamagnetic nature of Cu in the structure
[65, 75]. The introduction of diamagnetic moments into the specimens
leads to the decrease in magnetic properties during the milling process
[76] that would be due to the movement of domain walls [75] which
can be affected by the defects induced by milling and can greatly hin-
der the wall movement through the defects. The decrease of crystallite
size during the microstructure refinement leads to an increment in grain
boundary volume fraction which, in turn, causes an increase in the
amount of the atoms present in the grain boundary.

This is because of the low density of grain boundaries structure and
higher interatomic distances between neighbor atoms that can decrease
the effective magnetic moment by variation of the magnetic exchange
interaction of the nearest atoms [77, 78]. On the other hand, due to the
change in lattice parameter, the addition of copper leads to a remark-
able expansion in the Fe lattice, i.e., the expansion of the lattice has
a significant effect on the distance between atoms that are associated
with a severe decrease in the saturation magnetization [79]. Slight in-
crease of M can be due to the dominance of nanostructure effect over
the negative effect of copper. Also, it can be attributed to the presence of
surrounding Ni on Fe atoms. Furthermore, this can be corresponded to
increment in contamination level due to long milling time [49] as well
as the formation of defects that may negatively affect the ferromagnetic
ordering [68].

3.3.2. Coercivity

Fig. 8 shows the variation of coercivity with different contents of
copper after milling for 72 h. According to the figure, the coercivity first
increased by increasing the Cu content, up to 1.5% (61.28 Oe), and then
decreased to 32.26 Oe. The initial increment of the coercivity could be
due to several factors such as higher residual stress and dislocation den-
sity as a result of the severe plastic deformation through milling.

During the milling process, impurities and contaminations such as
oxides are transferred from container to the powder. These non-magnetic
impurities can increase the H_ since they are the main factor in closing
the magnetic domain walls [80].

Accordingly, it was observed that by increasing the percentage of
copper up to 3%, the coercivity rapidly reduced. The relationship be-
tween H, M, and grain size is as follows [25, 65]:

Coercivity (Oe)
n
=

0 1 2 3 4 5 6
Cu- content (at.%)

Fig. 8. Variation of coercivity for samples with different contents of Cu.
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in which, D, K|, T, and k are the crystallite size, magnetic-crystalline
anisotropy, Corie temperature, respectively, and k is constant [81].

According to obtained results, at lower contents of 3% Cu, the grains
size (12 nm) is more than the exchange length (L, ). When the grains

size is more than L _, the grains boundary hinders the field wall, since

volume fraction of grain boundaries increases as a result of grains fining.
When crystallite size (10 nm) is less than exchange length, effect of the
field walls decreases and each grain acts as a separate filed. In this case,
there is no grain boundary, therefore, magnetic walls move easier and

H_ decreases.

4. Conclusions

The nanocrystalline (FegsNi] 5) Cux (x=0, 0.5, 1.5, 3, and 5) sys-

tem was successfully prepared through the mechanical alloying meth-

100-x

od. Increasing copper content enhanced the rate of hard-working which
leads to an increment in defects especially dislocations. This led to the
reduction of crystallite size as well as the increment of internal strain.
The X-ray diffraction peaks were broadened with increasing copper con-
tent, which mainly was due to decreased crystallite size and increased
lattice strain. The crystallite size varied in the range of 18 to 8 nm in
copper-free Fe-Ni up to 5% Cu content. Also, the lattice parameter was
higher in copper-containing samples. The addition of Cu into Fe-Ni al-
loys lowered the M, which was due to its diamagnetic effect. On the
other hand, the coercivity increased by increasing copper content up to
1.5%. This was due to the increment in crystal defects and finer grain

size.
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