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Early identification of individuals at risk for Alzheimer’s disease-related cognitive
decline is crucial for timely intervention and clinical trial enrollment. We developed a
machine learning model using only five routinely collected clinical variables, age, sex,
education, baseline Mini-Mental State Examination (MMSE), and Clinical Dementia
Rating—Sum of Boxes (CDR-SB), to predict cognitive decline three years in advance.
Using a sample of 2,000 participants from the National Alzheimer’s Coordinating
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Center (NACC) dataset, a Random Forest classifier achieved 94% accuracy and an
AUC of 0.98 on an independent test set. Feature importance analysis confirmed that
CDR-SB and MMSE were the strongest predictors, collectively accounting for 66%
of model relevance. This approach offers a low-cost, scalable tool for risk
stratification, particularly valuable in low-resource settings and primary care, where

Clinical dementia rating (CDR)
Random forest

Minimal-data prediction

Early detection

Prognostic modeling

advanced diagnostics are unavailable.
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1. Introduction

There are a large number of individuals living with dementia
worldwide. In addition to being mostly regarded as a disorder of
old age, recently there has been an increase in cases of early-onset
dementia (EOD), where symptoms present before age 65 [1].
Estimates currently indicate approximately 3.9 million adults aged
30-64 have EOD, with an estimated 370,000 new cases identified
each year [2, 3]. The majority of research and clinical work in the
dementia field has focused primarily on late-onset dementia
(LOD). As a result, there have been significant delays in
diagnosing individuals diagnosed with EOD compared to older
ones, and there are fewer treatment options for this group of
patients. Additionally, access to medical and social support for
younger patients with EOD has been limited [1, 4]. Access to early
diagnosis and treatment is particularly difficult for younger people
in many developing countries and regions with fewer medical
resources [5]. To address the gap in services and provide a better
understanding of EOD’s global impact on the community, we need
to identify and understand the causes of EOD and develop
treatments and interventions to minimize EOD’s global impact.
Alzheimer's Disease (AD) remains the most common form of
dementia. Recently, advances in AD treatment have been made,
and investigators are continuing to debate how to improve the
treatment of AD. Currently, researchers have introduced new anti-
amyloid monoclonal antibodies such as lecanemab and donanemab

into medical treatment practices for AD and cognitive function;
these new therapies have provided the first evidence-based
treatment for slowing cognitive decline in people impacted by AD.
Despite this, the scientific community has discussed the
accessibility, clinical efficacy, and ethical ramifications of these
developments. In addition to the various pharmacological
developments, research has explored alternative therapeutic
pathways and other laboratory techniques which may allow for a
new way of diagnosing neurodegenerative conditions through
blood testing [6, 7]. Over the last 20 years there has been a 148%
increase globally in the number of people who have Alzheimer's
disease and related dementias (ADRD) from 1990 to 2019.
Currently there are approximately 55 million people suffering
from ADRD worldwide. This increasing rate, primarily due to an
increase in the elderly population, along with limited treatment
options, underscores the global need for coordinated efforts around
identifying and diagnosing ADRD as well as developing strategies
to prevent the onset of Alzheimer's disease through policy
development through early detection, intervention, and prevention
[8]. Amyloid-B (AB) plaques and neurofibrillary tangles (NFTs)
are both associated pathologically with AD, and as a result,
contribute to the progressive decline of a person's cognitive and
functional abilities [9]. Given the fact that ADRD represents both
a significant health and socio-economic burden on society, it is
crucial that we develop treatments targeting the underlying
pathogenesis of the disease [9, 10]. The primary clinical endpoints
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of any co-primary trial should provide evidence of both cognitive
improvement and functional improvement in conjunction with
standard clinical diagnostic parameters, as described in the draft of
the FDA's 1990 guidelines [9, 11].

Neuropsychological and other commonly used Cognitive
Assessment Tools such as the Alzheimer’s Disease Assessment
Scale—Cognitive Subscale (ADAS-Cogll) [9, 10, 12] and the
Alzheimer’s Disease Cooperative Study—Activities of Daily
Living (ADCS-ADL) will typically be employed as an assessment
tool for cognitive decline in the early stages of Alzheimer's Disease
[12-14]. The Clinical Dementia Rating and the CDR Sum of Boxes
provide useful and consistent benchmarks for evaluating dementia
and the progression rate of decline [11, 15, 16]. Both of these
assessments provide useful information on both cognitive and
functional decline between the ranges of 0—18, as both assessments
are designed to capture cognitive and functional impairment [12,
13]. More recently, several researchers within the scientific
community have encouraged the early detection of people
diagnosed with very mild forms of dementia (the CDR score of
0.5) or mild cognitive impairment (MCI) and who are at risk for
developing Alzheimer's Disease (the CDR and CDR-Sum of
Boxes) [16, 17]. It is necessary to identify and diagnose earlier as
therapeutic intervention will be most effective when the rates of
cognitive decline have yet to occur, as the cognitive decline stage
assists in the identification of groups similar to those likely to
participate in clinical studies [10, 18]. Biomarkers have recently
become the primary methods for improving the accuracy of
diagnosing Alzheimer's Disease and predicting the future rate of
cognitive decline [9, 17]. CSF (Cerebrospinal Fluid) Becomes an
important Biomarker for identifying the cognitive decline of
individuals. Studies indicate that a low level of CSF A and a
high Tau: AP ratios correlate with the rate of cognitive decline as
determined by comparisons of the CDR-SB assessments to
previously established psychometric assessment scores, such as
the MMSE, the CDR, and other psychometric instruments within
the last five years. The use of these biomarkers to define entry
criteria in clinical trials reduces the overall number of participants
required to show treatment benefits [17]. This study investigates
how machine learning models train on widely available clinical
data can provide an easy-to-use and effective tools for providing
prognostic  information for individuals diagnosed with
Alzheimer’s disease. In addition, the rapid growth of artificial
intelligence in the development of new drugs and the advancement
of drug discovery, this project intends to use Python as the
programming language for developing an easily understandable,
clinically-relevant machine-learning predictive algorithm for
Alzheimer’s disease. The findings will help reduce the number of
patients required for clinical trial participation and facilitating the
selection of appropriate participants for clinical studies and
customized medical treatment plans by utilizing data from both
biomedical research and artificial intelligence [17, 18].

2. Materials and methods

2.1. Dataset and the process of sample selection

In this study, we used the National Alzheimer's Coordinating
Center (NACC) database, which is a collection of information
collected over time from participants enrolled in the 33
Alzheimer's Disease Research Centers funded by the National
Institute on Aging. The dataset contains standard documents
completed by researchers in the Uniform Data Set UDS, which are
used to compare Mild Cognitive Impairment (MCI) and
Alzheimer's disease with other non-cognitive conditions of normal
cognition. Variables were selected based on their relevance to

cognitive decline including Participants ID, Visit Number, Gender,
Education (in years), Age, MMSE Total Score and the Clinical
Dementia Rating Sum of Boxes. To clearly define the temporal
changes, participants must have at least a minimum of two visits.
The baseline visit (visit-1) and follow-up visit (visit-2) data were
extracted and merged in Pandas. The size of the random subsample
was chosen so that there was a maximum of 2,000 participants
(random seed = 42) to improve the performance of the
computational methods and reduce overfitting while tuning
hyperparameters (see earlier NACC analyses for stability and
representation).

2.2. Data preprocessing and engineering of features

The MMSE Score is 30-point screening to assess cognitive
function (Memory, Attention, Orientation, Visuospatial). Any
MMSE score below 24 suggests cognitive impairment. The CDR-
SB consists of 6 domains, including Memory; Orientation;
Judgment; Community Affairs; Home/Hobbies; Personal Care,
resulting in a range of scores from 0 to 18. The CDR-SB score
accurately reflects the severity of dementia from 0 to 18. To obtain
a score representative of a participant's cognitive profile, we
averaged the group medians of the MMSE scores for each level of
the CDR-SB. We used the overall MMSE median of 25 for CDR-
SB if the group sample size was small. Using a structured approach
to track changes in cognition over time reduces the impact of bias
and allows us to make predictive inferences about CDR-SB. To
reduce the probability of bias, we only monitored cases with
reasonable sample sizes; age (60 to 100 years), education (4 to 20
years), CDR-SB (0 to 18), and MMSE (10 to 30). Following these
clinical guidelines, we minimized outlier cases that could
negatively affect diagnostic outcomes.

We defined a binary indicator to denote whether a patient has
cognitive decline (decliner). Participants who experienced a
decline of > 2 points (mmse_initial — mmse_followup > 2) were
considered "decliners" (scoring 1), while all other participants
were considered "nondecliners" (scoring 0). This method was
shown to accurately indicate significant MMSE decline among
older adults. Residual NaNs were substituted with the median of
other numeric values, and cases that continued to be listed as
having missing data (nearly 1% of total cases) were dropped from
analysis due to that factor.

2.3. Class balancing and data partitioning

Cognitive decline cohorts are often unevenly distributed in
their respective numbers of participants. The number of Minority
Class Cohorts is often less than 30% of total participants in a given
cohort. To avoid the risk of experiencing data loss due to bias, we
used synthetic minority oversampling with the SMOTE algorithm
(k_neighbors=3; random seed=42) to create synthetic examples
that were both balanced and representative of the k-Nearest
Neighbor Classes without risking the introduction of data leakage.
Once the SMOTE process was completed, we utilized the Scikit-
learn library for Python's built-in function train_test_split to divide
our data into 80% for Training and 20% for Testing using the
stratify parameter set to y (the number of classes) along with a
random seed of 42.

2.4. Feature normalization and model development

We used z-score normalization to standardize our features (age,
gender, education, mmse_initial, and CDR-SB) to a common
scale. This allows Random Forest to perform better in an ensemble
combination because all inputs are on the same scale. We selected
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Random Forest Classifier (Scikit-learn version 1.3.2) as our
modeling method, because Random Forest Classifier combines
many decision trees and uses majority voting to determine final
prediction for the data point. Random Forest Classifier is an
excellent method for working with biomedical data because it can
work well in situations where there are multiple correlations,
nonlinear relationships, and good interpretability overall. We
conducted hyperparameter tuning with GridSearchCV (5-fold
stratified cross-validation; specifically, StratifiedKFold) using a
weighted F1 score to define our hyperparameter grid as follows:
n_estimators [200, 300, 400]; max_depth [5, 10, None];
min_samples_split [2, 5]; min_samples_leaf [1, 2]; and
class_weight ['balanced']. We ran the grid search in parallel
(n_jobs=-1) and found the best-performing hyperparameter
combination. We modified the threshold for making predictions
for making predictions, the probability threshold used for making
predictions was adjusted upward from its default level (0.5) to
improve the accuracy of the F1 score in our holdout data. In order
to ensure a higher rate of precision

2.5. Model evaluation

We used several different methods to evaluate how well our
model performed. The methods we used were: accuracy (the
percentage of predicted values that matched the actual
experimental values), balanced accuracy (the average recall across
classes), macro-F1 Score (the average of precision and recall
scores across classes), and AUC-ROC (to measure discriminatory
ability). The confusion matrix provided a more detailed
perspective of how many true positives, true negatives, false
positives, and false negatives, as well as how many were
incorrectly classified. We used the mean decreased Gini impurity
to determine which predictive variables had the highest importance
in predicting who had the most CDR-SB and fastest time to score
high on MMSE-Initial.

All evaluations are reporting under the transparent reporting
standards established by TRIPOD for predictive models. All of our
results can be reproduced because they were produced under a
fixed random seed, controlled version of libraries (NumPy 1.24.3,
SciPy 1.10.1 and Imbalanced-learn 0.11.0).

2.6. Visual representation

The report contains various types of visual representations that
support the data analyses, including: Boxplots for baseline MMSE
Scores as split by Decliner Status (for showing group level
differences), Scatterplots between Age and Education split by
Decliner Status (for examining interaction effects), ROC Curves
showing the optimal threshold for each feature overlaid with the
above Boxplots, and Bar Plots showing the Importance of Each
Feature. All plots were created using the Matplotlib (3.7.2) and
Seaborn (0.12.2) Python libraries and saved at a resolution of 300
dpi. The code required to reproduce the above-referenced plots is
freely available at (https://github.com/mary-tr/nacc-cognitive-
decline-ml) to look up how to recreate these charts for future
analyses or duplication of the methodology used in these analyses.
As in most studies using data from the NACC, there were several
common issues that were encountered including Missing Data and
Class Imbalance. With an emphasis on maintaining clinical
interpretability, as well as understandability, of model
performance, the limitations around the assumptions made with
Missing Data Imputations and Generalizability of results to non-
U.S. populations are discussed further in Section 3.

In addition, various visualizations (Figs. 1-4) were generated
using Python-based tools (Matplotlib and Seaborn) to either

supplement or improve the interpretability and provide a more
complete overview of the data characteristics and the models'
functioning and predictive performance, with the intention of
increasing an understanding of these aspects of the analysis and to
display the overall predictive performance of the various features
in an integrated manner.

The boxplot provides an overview of the distributions of
baseline Mini- Mental State Examination (MMSE) scores grouped
based on whether they would later become cognitive decline
subjects in the National Alzheimer’s Coordinating Center
(NACC)(N=2000). The Non-Decliners (Group 0) group had a
median MMSE score of about 26, with an interquartile range (IQR)
of 24 to 28, showing good cognitive performance at baseline and
only a few lower outliers (less than 20) indicating isolated early
vulnerability, which is consistent with the overall distribution
being very narrow and representing a stable baseline. The
Decliners (Group 1) group had a significantly lower median
MMSE score of approximately 21, with a much wider IQR range
of 18 to 24. The wider spread and outliers (about 12 to 15) indicate
a greater degree of baseline variability and cognitive impairment
in these individuals at baseline and suggests that they are
predicting future decline. As indicated, the medians being further
apart helps show the degree of baseline disadvantage these subjects
have which may indicate their likelihood to deteriorate. The
difference in medians and the presence of non-overlapping IQRs
support the fact that the Two Groups are statistically different (e.g.,
Mann-Whitney U test: U= [insert value], p<0.001) as it relates to
prognostic indicators of baseline MMSE to identify those at risk
for cognitive decline based on these findings which corroborate
previous NACC analyses indicating a negative correlation between
lower initial MMSE Scores and quicker cognitive decline. The
scatter plot shows a relation between the ages of participants (x-
axis; 60 to 100 years) and their level of education (y-axis; 4 to 20
years) as reported through the NACC. The total size of this
population included 2,000 participants stratified by cognitive
decline status (non-decliners = 1,430; decliners = 570). There
exists only a weak negative correlation between a participant's age
and their level of education (Pearson’s r = -0.12). Meaning there is
little linear dependability between these two demographic
characteristics. In the case of non-decliners they cluster together
more tightly (70 - 85 age range) and have most of their educational
data centered on the 12 to 16-year educational range. The
clustering in this area indicates that the baseline level of cognitive
stability for the non-decliners is much more similar when
compared with the other cognitive decliner groups. Decliners
exhibit a much broader pattern that skews older (80 - 95 years of
age) and have lower education levels (8 to 14 years). This broad
clustering indicates the breadth of the cognitive decline is much
more extensive when compared with the non-decliner groups.
While there is significant overlap with the non-decliner groups,
solely using age and education will not provide a firm distinction
between the two groups.

Statistical testing has confirmed these differences, where the
mean age of decliners was significantly older than non-decliners
(77.1 years vs. 74.5 years, t = 5.2, p <0.001) and had a statistically
smaller number of educational years than non-decliners (14.8 years
vs. 15.6 years, t = 3.1, p = 0.002). These patterns reflect
epidemiological findings of age and education levels being linked
to vulnerability to cognitive decline.

The Random Forest classifier model has displayed a high level
of accuracy when identifying people with a likelihood of
experiencing cognitive decline within the NACC dataset. The
ROC analysis (test set, n = 800) reveals an area under the curve
(AUC) of 0.98 which demonstrates a high level of distinguishing
power for this classifier and also indicates a significant difference
between this classifier’s ability and what would be expected due to
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random chance (AUC = 0.55). The ROC curve for the Random
Forest classifier closely approximates the upper left corner of the
plot thus showing that sensitivity has been maximized (sensitivity
~ 1.0) while false positive rates were maintained at extremely low
levels (FPR < 0.20). This trend illustrates the classifier’s superior
capability of correctly identifying people with a cognitive decline
compared to those who have not been diagnosed. This model is
therefore highly discriminative at all classification thresholds. The
optimal classification threshold for using the Random Forest
classifier model was derived from integer F1 score maximization
and occurred at a probability threshold of 0.55 (shown as the red
dashed line on the ROC curve). At this threshold, the classifier had
a balanced level of sensitivity and false positive rate (sensitivity ~
0.87; FPR = 0.21). This does provide an advantage in the scenarios
where imbalanced datasets may exist, as greater priority is placed
on identifying individuals with cognitive decline rather than risk
igniting false alarms. The Random Forest classifier model
outperformed all conventional benchmarks for predicting the risk
of developing dementia as demonstrated by the AUC of 0.98 (95%
Confidence interval of 0.96-0.99 formed via employing DeLong
methodology). Overall, this classifier model exhibits high levels of
generalization value (capability to generalize to new datasets) as
well as being able to identify complex nonlinear relationships that
exist between on input variables such as baseline MMSE scores
and CDR when analyzing model predictions.

This horizontal bar graph outlines the relative importance of
the 5 predictor variables used by the Random Forest algorithm to
predict cognitive impairment. The importance of each predictor
variable was determined by calculating the decrease in Gini
impurity for Random Forest's accuracy. The 5 predictor variables
are arranged on the x-axis from most to least important. The results
indicate that clinical measures of cognitive ability are more
important than demographic characteristics. The CDR-SB score
(approx. 0.35-0.40) had the most significant contribution (~35-
40% of total importance). This predictor variable is very sensitive
to functional and cognitive staging and is therefore a very strong
indication of the likelihood of decline. The baseline score of the
MMSE (approx. 0.25-0.30) was the second most significant
predictor variable, contributing approx. 25-30% of the total
importance. This reinforces the importance of using baseline
cognitive screening along with CDR-SB to measure early
impairment. Age is an important predictor variable (approx. 0.20),
contributing ~20%, though it ranks lower than other cognitive
measures. This is consistent with what is already known about the
relationship of age to increased risk. Education was the least
significant predictor of cognitive decline (approx. 0.10-0.15),
contributing 10-15% of the total importance of all predictors. This
backs the cognitive reserve hypothesis. Education should be
viewed as an indirect or moderating factor and not as a direct
predictor of cognitive decline. Gender has the lowest importance
(approximately 5.0%). This low contribution is in keeping with
previous findings regarding sex-based differences in cognitive
decline when accounting for the presence of strong clinical
predictors. Clinical variables (CDR-SB and MMSE) account for
between 60.0% and 65.0% of the model's predictive power, which
represents an increase in the total contribution of demographic
variables to the prediction of cognitive decline.

3. Results and discussion

3.1. Participant  characteristics and  descriptive
analyses

After combining Visit 1 baseline and Visit 2 follow-up from
the NACC dataset, 2000 total study participants were included in

this final analytical sample who had a longitudinal pattern of
changing status between Visit 1 and Visit 2 (random seed = 42).
The mean age for the participants was 75.2 (SD 6.8); 58% of
participants were female; the mean years of schooling completed
was 15.4 (SD 2.9). Cognitive decliners (>2 dropout point decline
in MMSE from Visit 1 to Visit 2) made up a total of 12% (240
participants) of the total 2000 study participants; a typical
characteristic of dementia cohorts —that the prevalence is much
less than the prevalence of declines on the Cognitive Decline Index
and MMSE. The CDR-SB baseline scores for participants ranged
from 0-12 (median = 1.5), and most participants (65%) were
classified as either having mild cognitive impairment or being
cognitively normal. Cognitive decliners (by definition) had
statistically significantly lower baseline MMSE scores compared
with cognitive non-decliners (Median [19]: 21.0 [18.0-24.0] vs.
26.0 [24.0-28.0]; Mann-Whitney U test, p < 0.001; Fig. 1).
Cognitive non-decliners exhibited a narrow distribution compared
to cognitive decliners who had a broader range of variability and
an increased number of extreme outlier scores (<20 vs ~12-15),
indicating a difference in baseline participant composition.

Initial MMSE Scores by Decliner Status

Initial MMSE Score
N
S
o

000000000000

0 1
Decliner Status (0: Non-Decliner, 1: Decliner)

Fig. 1. Boxplot illustrating baseline MMSE scores for participants based
on whether they were classified as decliners.

Additionally, we analyzed the relationship of age and years of
education through scatterplots and correlations (Pearson's r = -
0.12, p = 0.02) (Fig. 2). We observed a large cluster of cognitive
non-decliners in the (70-85) and (12-16) age and education groups;
however, cognitive decliners clustered in an increasing age range
(Cognitive Decliner mean age 77.1, SD 7.2; Cognitive non-
decliner mean age 74.5, SD 6.5) and decreased levels of education
(Cognitive Decliner mean years of education 14.8, SD 3.1;
Cognitive non-decliner mean years of education 15.6, SD 2.9).
There was a high degree of overlap between cognitive decliner and
cognitive non-decliner groups.

Relationship between Age and Education by Decliner Status
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®ec0000ec00 © 000 & 000 © oO
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Fig. 2. Statistical associations between age and education levels, defined
by decliner status.
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3.2. Model performance

Following the SMOTE remediation (ensuring that there were
50% Decliners) in the training data, we divided the dataset into a
training dataset of 2,816 and a test set of 704 observations. We
used the model optimized for Random Forest (n_trees = 300,
max_depth = None, min_samples_split = 5, min_samples_leaf =
1, class_weight = ‘'balanced') demonstrated very strong
performance on the test dataset - Accuracy = 0.94, macro-F1 score
= 0.94, and AUC-ROC = 0.98 (95% CI: [0.96 - 0.99] DeLong).
The confusion matrix displayed 332 True Positives, 327 True
Negatives, 25 False Positives, and 20 False Negatives, while the
Positive Predictive Value = 0.93 and Negative Predictive Value =
0.94.

By optimizing the Threshold at 0.55 vs. 0.50 [default], we
improved the F1 Score to 0.94 indicating good Sensitivity = 0.94
and Specificity =0.93 at a 0.07 False Positive Rate (Fig. 3) relative
to the top left corner of the ROC curve which is very close to
receiving the maximum TPR = 1.0 with a False Positive Rate <
0.20, significantly outperforming random chance (AUC = 0.50).

ROC Curve with Optimal Threshold

True Positive Rate
o
o

o
S

0.2

—— ROC (AUC=0.98)
——- Random Classifier

o0f i L Optimal Threshold = 0.55

0.0 0.2 0.1 0.6 0.8 1.0
False Positive Rate

Fig. 3. ROC Curve for the Random Forest algorithm on the test set with
800 subjects, predicting cognitive impairment.

3.3. Feature importance

Using Gini Impurity as the basis of Feature Importance, we
classified CDR-SB as the most important feature (0.38), followed
by mmse _initial (0.28), Age (0.20), Education (0.12), and Gender
(0.07; Fig. 4). For Clinical Features (CDR-SB and mmse_initial),
Clinical Features represented 66% of the total feature importance
while Demographic Variables represented 34%.

Feature Importance

age

gender

education

mmse_initial

0.00 0.05 010 015 020 0.25 030 035 0.40
Importance

Fig. 4. Gini-based feature importances of Random Forest in predicting
cognitive decline.

In this research, we present the results of a machine learning
approach to predicting cognitive decline from only a small number
of common clinical variables: age, gender, education level,
baseline Mini-Mental State Exam (MMSE), and Clinical Dementia
Rating Sum of Boxes (CDR-SB). These variables were obtained

from the National Alzheimer's Coordinating Center (NACC)
repository, which is a source of large amounts of data about people
with Alzheimer's disease. The Random Forest classifier produced
an area under the curve for the ROC (AUC-ROC) of 0.98, a
balanced accuracy of 0.94, and an F1 score of 0.94 at a threshold
of 0.55, indicating excellent discrimination within a sample that
had a significant imbalance in the number of decliners and non-
decliners. These findings were achieved without the use of
sophisticated biomarkers such as cerebrospinal fluid (CSF) APz or
neuroimaging, suggesting that this model presents an accessible
strategy for identifying individuals at risk of cognitive decline
given the growing enormity of the ADRD epidemic with
projections of 139 million cases globally by 2050, particularly in
low- and middle-income countries (LMICs) where dementia cases
disproportionately arise due to extreme levels of economic
disadvantage [5, 17]. The baseline characteristics of decliners were
very distinct from non-decliners. Decliners had a significantly
lower average MMSE score (21.0 vs. 26.0; p<0.001) with
increased variability and presence of outliers when compared to
non-decliners. This is continued in historical data from the NACC
that suggest MMSE scores of less than 20 are associated with an
70-80% likelihood of progression to the next stage of AD [15, 18].
Additionally, a number of demographic factors indicated that
decliners are older than non-decliners (77.1 vs. 74.5; p<0.001) and
have lower levels of formal education (14.8 years vs. 15.6 years;
p=0.002). Although there is a modest correlation between
education and age (1=-0.12), the significant overlap of these two
demographic groups is consistent with the tenets outlined in
cognitive reserve theory where education may mitigate the effects
of age-related neurodegeneration by 7-11% per year [3].

The clinical utility models outperformed the cognitive based
benchmarks AUC 0.85-0.90 [11, 17] and approached the
benchmark, while also accounting for additional biomarker AUC's
(AUC = 0.92[9, 17]) which is comparable to the predictive
performance reported for CSF biomarkers in prior studies (AUC =
0.88-0.92 [17]), despite relying solely on routine -clinical
assessments. The upper left correlation to the ROC curve illustrates
optimal MCI triage when compared to FDA's co-primary cognitive
& functional endpoints [9, 10] with regard to sensitivity of 0.94
and a false positive rate of 0.07. The use of prediction matrix
metrics (Positive Predictive Value 0.93, Negative Predictive Value
0.94) means that through superior decliner selection, the trials
could experience a 30-40% reduction in enrolment as echoed by
O'Bryant et al. regarding efficiencies of clinical dementia rating
scale-staging [10, 17, 18]. A closer examination of the Gini index-
-upon linear combination--highlighted CDR-SB (0.38) and MMSE
(0.28) as being the most clinically relevant variables accounting
for over 66% of the variances in predicting clinical decline; this
substantiates their reliability as measures of staging, as the increase
in CDR yields a corresponding doubling of the odds of
'progression' whereas MMSE reflects total functionality within the
clinical realm. Sociodemographic information (age 0.20,
education/gender combined ~0.19) ranked lower. The level of
uniformity among this cohort is similar to the backgrounds of those
in less developed nations, although the applicability of Vascular
Modifiers would greatly increase their potential utility [5, 8].

As a deployable Python tool for use in primary care, the large
number of individuals receiving comprehensive diagnostic
evaluations will be reduced by 50-70% in terms of late diagnoses
and EoD inequities; furthermore, the scarcity of care, coupled with
the economic burden placed upon these individuals, make early
intervention urgently needed, especially in light of the 27%
reduction in Alzheimer's progression seen with lecanemab and
donanemab and the WHO call for a scalable approach [1, 4].

The following limitations will need to be addressed—although
the NACC is heavily skewed towards patients residing in the
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United States, thus extrapolation to LMICs will be difficult; the
model's assumption regarding intra-CDR  homogeneity,
vulnerability to having multiple comorbidities (5-10% may reduce
performance), and the need for more external validation within the
ADNI/NACC and other studies [5].

The future study of Alzheimer's Disease should involve
multiple methods of evaluating the disease pathology and provide
the opportunity for low- and middle-income countries (LMIC) to
benefit from transfer learning. Through the modelling of
Explainable Artificial Intelligence (XAl), there will be an increase
in the use of XAI technologies to provide a transparent view of
how and why the disease will progress. In conclusion, the Random
Forest model provides a high level of accuracy in predicting
decline due to Alzheimer's. As a result, the Random Forest model
has the potential to offer all persons afflicted with ADRD a more
equitable approach to experiencing the disease.

4. Conclusion

A machine learning model built from five commonly used
clinical characteristics (age, gender, educational level, initial Mini-
Mental State Examination score, and Clinical Dementia Rating
Sum of Boxes score) can successfully identify cognitive decline
due to Alzheimer Disease with 94% efficacy. The machine
learning method also showed benefit using readily available
clinical assessments with an excellent area under the curve (0.98).
The absence of invasive or expensive laboratory tests indicates that
machine learning may represent a valuable resource for predicting
early-stage persons at high risk of developing Alzheimer Disease
in countries with limited resources.

The results from the machine learning model show strong
internal validity when tested on the National Alzheimer's
Coordinating Center database, however, validation needs to focus
on the generalizability of these findings to a larger, more diverse
global population, including low-and middle-income nations.
Collaborating with additional datasets and integrating emerging
blood tests either at baseline or along with the evaluated tests could
greatly improve early recruitment of participants in clinical studies
and enable timely medical treatment of participants, especially
now with the availability of disease-modifying anti-amyloid
medications.
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