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A B S T R A C T 
 

A R T I C L E    I N F O R M A T I O N 

Early identification of individuals at risk for Alzheimer’s disease–related cognitive 
decline is crucial for timely intervention and clinical trial enrollment. We developed a 
machine learning model using only five routinely collected clinical variables, age, sex, 
education, baseline Mini-Mental State Examination (MMSE), and Clinical Dementia 
Rating–Sum of Boxes (CDR-SB), to predict cognitive decline three years in advance. 
Using a sample of 2,000 participants from the National Alzheimer’s Coordinating 
Center (NACC) dataset, a Random Forest classifier achieved 94% accuracy and an 
AUC of 0.98 on an independent test set. Feature importance analysis confirmed that 
CDR-SB and MMSE were the strongest predictors, collectively accounting for 66% 
of model relevance. This approach offers a low-cost, scalable tool for risk 
stratification, particularly valuable in low-resource settings and primary care, where 
advanced diagnostics are unavailable. 
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1. Introduction 

There are a large number of individuals living with dementia 
worldwide. In addition to being mostly regarded as a disorder of 
old age, recently there has been an increase in cases of early-onset 
dementia (EOD), where symptoms present before age 65 [1]. 
Estimates currently indicate approximately 3.9 million adults aged 
30-64 have EOD, with an estimated 370,000 new cases identified 
each year [2, 3]. The majority of research and clinical work in the 
dementia field has focused primarily on late-onset dementia 
(LOD). As a result, there have been significant delays in 
diagnosing individuals diagnosed with EOD compared to older 
ones, and there are fewer treatment options for this group of 
patients. Additionally, access to medical and social support for 
younger patients with EOD has been limited [1, 4]. Access to early 
diagnosis and treatment is particularly difficult for younger people 
in many developing countries and regions with fewer medical 
resources [5]. To address the gap in services and provide a better 
understanding of EOD’s global impact on the community, we need 
to identify and understand the causes of EOD and develop 
treatments and interventions to minimize EOD’s global impact. 
Alzheimer's Disease (AD) remains the most common form of 
dementia. Recently, advances in AD treatment have been made, 
and investigators are continuing to debate how to improve the 
treatment of AD. Currently, researchers have introduced new anti-
amyloid monoclonal antibodies such as lecanemab and donanemab 

into medical treatment practices for AD and cognitive function; 
these new therapies have provided the first evidence-based 
treatment for slowing cognitive decline in people impacted by AD. 
Despite this, the scientific community has discussed the 
accessibility, clinical efficacy, and ethical ramifications of these 
developments. In addition to the various pharmacological 
developments, research has explored alternative therapeutic 
pathways and other laboratory techniques which may allow for a 
new way of diagnosing neurodegenerative conditions through 
blood testing [6, 7]. Over the last 20 years there has been a 148% 
increase globally in the number of people who have Alzheimer's 
disease and related dementias (ADRD) from 1990 to 2019. 
Currently there are approximately 55 million people suffering 
from ADRD worldwide. This increasing rate, primarily due to an 
increase in the elderly population, along with limited treatment 
options, underscores the global need for coordinated efforts around 
identifying and diagnosing ADRD as well as developing strategies 
to prevent the onset of Alzheimer's disease through policy 
development through early detection, intervention, and prevention 
[8]. Amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs) 
are both associated pathologically with AD, and as a result, 
contribute to the progressive decline of a person's cognitive and 
functional abilities [9]. Given the fact that ADRD represents both 
a significant health and socio-economic burden on society, it is 
crucial that we develop treatments targeting the underlying 
pathogenesis of the disease [9, 10]. The primary clinical endpoints 
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of any co-primary trial should provide evidence of both cognitive 
improvement and functional improvement in conjunction with 
standard clinical diagnostic parameters, as described in the draft of 
the FDA's 1990 guidelines [9, 11].  

Neuropsychological and other commonly used Cognitive 
Assessment Tools such as the Alzheimer’s Disease Assessment 
Scale–Cognitive Subscale (ADAS-Cog11) [9, 10, 12] and the 
Alzheimer’s Disease Cooperative Study–Activities of Daily 
Living (ADCS-ADL) will typically be employed as an assessment 
tool for cognitive decline in the early stages of Alzheimer's Disease 
[12-14]. The Clinical Dementia Rating and the CDR Sum of Boxes 
provide useful and consistent benchmarks for evaluating dementia 
and the progression rate of decline [11, 15, 16]. Both of these 
assessments provide useful information on both cognitive and 
functional decline between the ranges of 0–18, as both assessments 
are designed to capture cognitive and functional impairment [12, 
13]. More recently, several researchers within the scientific 
community have encouraged the early detection of people 
diagnosed with very mild forms of dementia (the CDR score of 
0.5) or mild cognitive impairment (MCI) and who are at risk for 
developing Alzheimer's Disease (the CDR and CDR-Sum of 
Boxes) [16, 17]. It is necessary to identify and diagnose earlier as 
therapeutic intervention will be most effective when the rates of 
cognitive decline have yet to occur, as the cognitive decline stage 
assists in the identification of groups similar to those likely to 
participate in clinical studies [10, 18]. Biomarkers have recently 
become the primary methods for improving the accuracy of 
diagnosing Alzheimer's Disease and predicting the future rate of 
cognitive decline [9, 17]. CSF (Cerebrospinal Fluid) Becomes an 
important Biomarker for identifying the cognitive decline of 
individuals. Studies indicate that a low level of CSF Aβ₄₂ and a 
high Tau: Aβ₄₂ ratios correlate with the rate of cognitive decline as 
determined by comparisons of the CDR-SB assessments to 
previously established psychometric assessment scores, such as 
the MMSE, the CDR, and other psychometric instruments within 
the last five years. The use of these biomarkers to define entry 
criteria in clinical trials reduces the overall number of participants 
required to show treatment benefits [17]. This study investigates 
how machine learning models train on widely available clinical  
data can provide an easy-to-use and effective tools for providing 
prognostic information for individuals diagnosed with 
Alzheimer’s disease. In addition, the rapid growth of artificial 
intelligence in the development of new drugs and the advancement 
of drug discovery, this project intends to use Python as the 
programming language for developing an easily understandable, 
clinically-relevant machine-learning predictive algorithm for 
Alzheimer’s disease. The findings will help reduce the number of 
patients required for clinical trial participation and facilitating the 
selection of appropriate participants for clinical studies and 
customized medical treatment plans by utilizing data from both 
biomedical research and artificial intelligence [17, 18]. 

 
2. Materials and methods  

2.1. Dataset and the process of sample selection 

In this study, we used the National Alzheimer's Coordinating 
Center (NACC) database, which is a collection of information 
collected over time from participants enrolled in the 33 
Alzheimer's Disease Research Centers funded by the National 
Institute on Aging. The dataset contains standard documents 
completed by researchers in the Uniform Data Set UDS, which are 
used to compare Mild Cognitive Impairment (MCI) and 
Alzheimer's disease with other non-cognitive conditions of normal 
cognition. Variables were selected based on their relevance to 

cognitive decline including Participants ID, Visit Number, Gender, 
Education (in years), Age, MMSE Total Score and the Clinical 
Dementia Rating Sum of Boxes. To clearly define the temporal 
changes, participants must have at least a minimum of two visits. 
The baseline visit (visit-1) and follow-up visit (visit-2) data were 
extracted and merged in Pandas. The size of the random subsample 
was chosen so that there was a maximum of 2,000 participants 
(random seed = 42) to improve the performance of the 
computational methods and reduce overfitting while tuning 
hyperparameters (see earlier NACC analyses for stability and 
representation). 

2.2. Data preprocessing and engineering of features 

The MMSE Score is 30-point screening to assess cognitive 
function (Memory, Attention, Orientation, Visuospatial). Any 
MMSE score below 24 suggests cognitive impairment. The CDR-
SB consists of 6 domains, including Memory; Orientation; 
Judgment; Community Affairs; Home/Hobbies; Personal Care, 
resulting in a range of scores from 0 to 18. The CDR-SB score 
accurately reflects the severity of dementia from 0 to 18. To obtain 
a score representative of a participant's cognitive profile, we 
averaged the group medians of the MMSE scores for each level of 
the CDR-SB. We used the overall MMSE median of 25 for CDR-
SB if the group sample size was small. Using a structured approach 
to track changes in cognition over time reduces the impact of bias 
and allows us to make predictive inferences about CDR-SB. To 
reduce the probability of bias, we only monitored cases with 
reasonable sample sizes; age (60 to 100 years), education (4 to 20 
years), CDR-SB (0 to 18), and MMSE (10 to 30). Following these 
clinical guidelines, we minimized outlier cases that could 
negatively affect diagnostic outcomes. 

We defined a binary indicator to denote whether a patient has 
cognitive decline (decliner). Participants who experienced a 
decline of > 2 points (mmse_initial – mmse_followup > 2) were 
considered "decliners" (scoring 1), while all other participants 
were considered "nondecliners" (scoring 0). This method was 
shown to accurately indicate significant MMSE decline among 
older adults. Residual NaNs were substituted with the median of 
other numeric values, and cases that continued to be listed as 
having missing data (nearly 1% of total cases) were dropped from 
analysis due to that factor. 

2.3. Class balancing and data partitioning 

Cognitive decline cohorts are often unevenly distributed in 
their respective numbers of participants. The number of Minority 
Class Cohorts is often less than 30% of total participants in a given 
cohort. To avoid the risk of experiencing data loss due to bias, we 
used synthetic minority oversampling with the SMOTE algorithm 
(k_neighbors=3; random seed=42) to create synthetic examples 
that were both balanced and representative of the k-Nearest 
Neighbor Classes without risking the introduction of data leakage. 
Once the SMOTE process was completed, we utilized the Scikit-
learn library for Python's built-in function train_test_split to divide 
our data into 80% for Training and 20% for Testing using the 
stratify parameter set to y (the number of classes) along with a 
random seed of 42. 

2.4. Feature normalization and model development 

We used z-score normalization to standardize our features (age, 
gender, education, mmse_initial, and CDR-SB) to a common 
scale. This allows Random Forest to perform better in an ensemble 
combination because all inputs are on the same scale. We selected 
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Random Forest Classifier (Scikit-learn version 1.3.2) as our 
modeling method, because Random Forest Classifier combines 
many decision trees and uses majority voting to determine final 
prediction for the data point. Random Forest Classifier is an 
excellent method for working with biomedical data because it can 
work well in situations where there are multiple correlations, 
nonlinear relationships, and good interpretability overall. We 
conducted hyperparameter tuning with GridSearchCV (5-fold 
stratified cross-validation; specifically, StratifiedKFold) using a 
weighted F1 score to define our hyperparameter grid as follows: 
n_estimators [200, 300, 400]; max_depth [5, 10, None]; 
min_samples_split [2, 5]; min_samples_leaf [1, 2]; and 
class_weight ['balanced']. We ran the grid search in parallel 
(n_jobs=-1) and found the best-performing hyperparameter 
combination. We modified the threshold for making predictions 
for making predictions, the probability threshold used for making 
predictions was adjusted upward from its default level (0.5) to 
improve the accuracy of the F1 score in our holdout data. In order 
to ensure a higher rate of precision 

2.5. Model evaluation 

We used several different methods to evaluate how well our 
model performed. The methods we used were: accuracy (the 
percentage of predicted values that matched the actual 
experimental values), balanced accuracy (the average recall across 
classes), macro-F1 Score (the average of precision and recall 
scores across classes), and AUC-ROC (to measure discriminatory 
ability). The confusion matrix provided a more detailed 
perspective of how many true positives, true negatives, false 
positives, and false negatives, as well as how many were 
incorrectly classified. We used the mean decreased Gini impurity 
to determine which predictive variables had the highest importance 
in predicting who had the most CDR-SB and fastest time to score 
high on MMSE-Initial.  

All evaluations are reporting under the transparent reporting 
standards established by TRIPOD for predictive models. All of our 
results can be reproduced because they were produced under a 
fixed random seed, controlled version of libraries (NumPy 1.24.3, 
SciPy 1.10.1 and Imbalanced-learn 0.11.0). 

2.6. Visual representation 

The report contains various types of visual representations that 
support the data analyses, including: Boxplots for baseline MMSE 
Scores as split by Decliner Status (for showing group level 
differences), Scatterplots between Age and Education split by 
Decliner Status (for examining interaction effects), ROC Curves 
showing the optimal threshold for each feature overlaid with the 
above Boxplots, and Bar Plots showing the Importance of Each 
Feature. All plots were created using the Matplotlib (3.7.2) and 
Seaborn (0.12.2) Python libraries and saved at a resolution of 300 
dpi. The code required to reproduce the above-referenced plots is 
freely available at (https://github.com/mary-tr/nacc-cognitive-
decline-ml) to look up how to recreate these charts for future 
analyses or duplication of the methodology used in these analyses.  
As in most studies using data from the NACC, there were several 
common issues that were encountered including Missing Data and 
Class Imbalance. With an emphasis on maintaining clinical 
interpretability, as well as understandability, of model 
performance, the limitations around the assumptions made with 
Missing Data Imputations and Generalizability of results to non-
U.S. populations are discussed further in Section 3.  

In addition, various visualizations (Figs. 1–4) were generated 
using Python-based tools (Matplotlib and Seaborn) to either 

supplement or improve the interpretability and provide a more 
complete overview of the data characteristics and the models' 
functioning and predictive performance, with the intention of 
increasing an understanding of these aspects of the analysis and to 
display the overall predictive performance of the various features 
in an integrated manner.  

The boxplot provides an overview of the distributions of 
baseline Mini- Mental State Examination (MMSE) scores grouped 
based on whether they would later become cognitive decline 
subjects in the National Alzheimer’s Coordinating Center 
(NACC)(N=2000). The Non-Decliners (Group 0) group had a 
median MMSE score of about 26, with an interquartile range (IQR) 
of 24 to 28, showing good cognitive performance at baseline and 
only a few lower outliers (less than 20) indicating isolated early 
vulnerability, which is consistent with the overall distribution 
being very narrow and representing a stable baseline. The 
Decliners (Group 1) group had a significantly lower median 
MMSE score of approximately 21, with a much wider IQR range 
of 18 to 24. The wider spread and outliers (about 12 to 15) indicate 
a greater degree of baseline variability and cognitive impairment 
in these individuals at baseline and suggests that they are 
predicting future decline. As indicated, the medians being further 
apart helps show the degree of baseline disadvantage these subjects 
have which may indicate their likelihood to deteriorate. The 
difference in medians and the presence of non-overlapping IQRs 
support the fact that the Two Groups are statistically different (e.g., 
Mann-Whitney U test: U= [insert value], p<0.001) as it relates to 
prognostic indicators of baseline MMSE to identify those at risk 
for cognitive decline based on these findings which corroborate 
previous NACC analyses indicating a negative correlation between 
lower initial MMSE Scores and quicker cognitive decline. The 
scatter plot shows a relation between the ages of participants (x-
axis; 60 to 100 years) and their level of education (y-axis; 4 to 20 
years) as reported through the NACC. The total size of this 
population included 2,000 participants stratified by cognitive 
decline status (non-decliners = 1,430; decliners = 570). There 
exists only a weak negative correlation between a participant's age 
and their level of education (Pearson’s r = -0.12). Meaning there is 
little linear dependability between these two demographic 
characteristics. In the case of non-decliners they cluster together 
more tightly (70 - 85 age range) and have most of their educational 
data centered on the 12 to 16-year educational range. The 
clustering in this area indicates that the baseline level of cognitive 
stability for the non-decliners is much more similar when 
compared with the other cognitive decliner groups. Decliners 
exhibit a much broader pattern that skews older (80 - 95 years of 
age) and have lower education levels (8 to 14 years). This broad 
clustering indicates the breadth of the cognitive decline is much 
more extensive when compared with the non-decliner groups. 
While there is significant overlap with the non-decliner groups, 
solely using age and education will not provide a firm distinction 
between the two groups. 

Statistical testing has confirmed these differences, where the 
mean age of decliners was significantly older than non-decliners 
(77.1 years vs. 74.5 years, t = 5.2, p < 0.001) and had a statistically 
smaller number of educational years than non-decliners (14.8 years 
vs. 15.6 years, t = 3.1, p = 0.002). These patterns reflect 
epidemiological findings of age and education levels being linked 
to vulnerability to cognitive decline.  

The Random Forest classifier model has displayed a high level 
of accuracy when identifying people with a likelihood of 
experiencing cognitive decline within the NACC dataset. The 
ROC analysis (test set, n = 800) reveals an area under the curve 
(AUC) of 0.98 which demonstrates a high level of distinguishing 
power for this classifier and also indicates a significant difference 
between this classifier’s ability and what would be expected due to 
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random chance (AUC = 0.55). The ROC curve for the Random 
Forest classifier closely approximates the upper left corner of the 
plot thus showing that sensitivity has been maximized (sensitivity 
≈ 1.0) while false positive rates were maintained at extremely low 
levels (FPR < 0.20). This trend illustrates the classifier’s superior 
capability of correctly identifying people with a cognitive decline 
compared to those who have not been diagnosed. This model is 
therefore highly discriminative at all classification thresholds. The 
optimal classification threshold for using the Random Forest 
classifier model was derived from integer F1 score maximization 
and occurred at a probability threshold of 0.55 (shown as the red 
dashed line on the ROC curve). At this threshold, the classifier had 
a balanced level of sensitivity and false positive rate (sensitivity ≈ 
0.87; FPR ≈ 0.21). This does provide an advantage in the scenarios 
where imbalanced datasets may exist, as greater priority is placed 
on identifying individuals with cognitive decline rather than risk 
igniting false alarms. The Random Forest classifier model 
outperformed all conventional benchmarks for predicting the risk 
of developing dementia as demonstrated by the AUC of 0.98 (95% 
Confidence interval of 0.96-0.99 formed via employing DeLong 
methodology). Overall, this classifier model exhibits high levels of 
generalization value (capability to generalize to new datasets) as 
well as being able to identify complex nonlinear relationships that 
exist between on input variables such as baseline MMSE scores 
and CDR when analyzing model predictions. 

This horizontal bar graph outlines the relative importance of 
the 5 predictor variables used by the Random Forest algorithm to 
predict cognitive impairment. The importance of each predictor 
variable was determined by calculating the decrease in Gini 
impurity for Random Forest's accuracy. The 5 predictor variables 
are arranged on the x-axis from most to least important. The results 
indicate that clinical measures of cognitive ability are more 
important than demographic characteristics. The CDR-SB score 
(approx. 0.35-0.40) had the most significant contribution (~35-
40% of total importance). This predictor variable is very sensitive 
to functional and cognitive staging and is therefore a very strong 
indication of the likelihood of decline. The baseline score of the 
MMSE (approx. 0.25-0.30) was the second most significant 
predictor variable, contributing approx. 25-30% of the total 
importance. This reinforces the importance of using baseline 
cognitive screening along with CDR-SB to measure early 
impairment. Age is an important predictor variable (approx. 0.20), 
contributing ~20%, though it ranks lower than other cognitive 
measures. This is consistent with what is already known about the 
relationship of age to increased risk. Education was the least 
significant predictor of cognitive decline (approx. 0.10-0.15), 
contributing 10-15% of the total importance of all predictors. This 
backs the cognitive reserve hypothesis. Education should be 
viewed as an indirect or moderating factor and not as a direct 
predictor of cognitive decline. Gender has the lowest importance 
(approximately 5.0%). This low contribution is in keeping with 
previous findings regarding sex-based differences in cognitive 
decline when accounting for the presence of strong clinical 
predictors. Clinical variables (CDR-SB and MMSE) account for 
between 60.0% and 65.0% of the model's predictive power, which 
represents an increase in the total contribution of demographic 
variables to the prediction of cognitive decline. 

 
3. Results and discussion  

3.1. Participant characteristics and descriptive 
analyses 

After combining Visit 1 baseline and Visit 2 follow-up from 
the NACC dataset, 2000 total study participants were included in 

this final analytical sample who had a longitudinal pattern of 
changing status between Visit 1 and Visit 2 (random seed = 42). 
The mean age for the participants was 75.2 (SD 6.8); 58% of 
participants were female; the mean years of schooling completed 
was 15.4 (SD 2.9). Cognitive decliners (>2 dropout point decline 
in MMSE from Visit 1 to Visit 2) made up a total of 12% (240 
participants) of the total 2000 study participants; a typical 
characteristic of dementia cohorts —that the prevalence is much 
less than the prevalence of declines on the Cognitive Decline Index 
and MMSE. The CDR-SB baseline scores for participants ranged 
from 0-12 (median = 1.5), and most participants (65%) were 
classified as either having mild cognitive impairment or being 
cognitively normal. Cognitive decliners (by definition) had 
statistically significantly lower baseline MMSE scores compared 
with cognitive non -decliners (Median [19]: 21.0 [18.0-24.0] vs. 
26.0 [24.0-28.0]; Mann-Whitney U test, p < 0.001; Fig. 1). 
Cognitive non -decliners exhibited a narrow distribution compared 
to cognitive decliners who had a broader range of variability and 
an increased number of extreme outlier scores (<20 vs ~12-15), 
indicating a difference in baseline participant composition.  

 

Fig. 1. Boxplot illustrating baseline MMSE scores for participants based 
on whether they were classified as decliners. 

Additionally, we analyzed the relationship of age and years of 
education through scatterplots and correlations (Pearson's r = -
0.12, p = 0.02) (Fig. 2). We observed a large cluster of cognitive 
non -decliners in the (70-85) and (12-16) age and education groups; 
however, cognitive decliners clustered in an increasing age range 
(Cognitive Decliner mean age 77.1, SD 7.2; Cognitive non -
decliner mean age 74.5, SD 6.5) and decreased levels of education 
(Cognitive Decliner mean years of education 14.8, SD 3.1; 
Cognitive non-decliner mean years of education 15.6, SD 2.9). 
There was a high degree of overlap between cognitive decliner and 
cognitive non -decliner groups. 

 

Fig. 2. Statistical associations between age and education levels, defined 
by decliner status. 
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3.2. Model performance 

Following the SMOTE remediation (ensuring that there were 
50% Decliners) in the training data, we divided the dataset into a 
training dataset of 2,816 and a test set of 704 observations. We 
used the model optimized for Random Forest (n_trees = 300, 
max_depth = None, min_samples_split = 5, min_samples_leaf = 
1, class_weight = 'balanced') demonstrated very strong 
performance on the test dataset - Accuracy = 0.94, macro-F1 score 
= 0.94, and AUC-ROC = 0.98 (95% CI: [0.96 - 0.99] DeLong). 
The confusion matrix displayed 332  True Positives, 327  True 
Negatives, 25 False Positives, and 20 False Negatives, while the 
Positive Predictive Value = 0.93 and Negative Predictive Value = 
0.94.  

By optimizing the Threshold at 0.55 vs. 0.50 [default], we 
improved the F1 Score to 0.94 indicating good Sensitivity = 0.94 
and Specificity = 0.93 at a 0.07 False Positive Rate (Fig. 3) relative 
to the top left corner of the ROC curve which is very close to 
receiving the maximum TPR ≈ 1.0 with a False Positive Rate < 
0.20, significantly outperforming random chance (AUC = 0.50). 

 

Fig. 3. ROC Curve for the Random Forest algorithm on the test set with 
800 subjects, predicting cognitive impairment. 

3.3. Feature importance 

Using Gini Impurity as the basis of Feature Importance, we 
classified CDR-SB as the most important feature (0.38), followed 
by mmse_initial (0.28), Age (0.20), Education (0.12), and Gender 
(0.07; Fig. 4). For Clinical Features (CDR-SB and mmse_initial), 
Clinical Features represented 66% of the total feature importance 
while Demographic Variables represented 34%. 

 

Fig. 4. Gini-based feature importances of Random Forest in predicting 
cognitive decline. 

In this research, we present the results of a machine learning 
approach to predicting cognitive decline from only a small number 
of common clinical variables: age, gender, education level, 
baseline Mini-Mental State Exam (MMSE), and Clinical Dementia 
Rating Sum of Boxes (CDR-SB). These variables were obtained 

from the National Alzheimer's Coordinating Center (NACC) 
repository, which is a source of large amounts of data about people 
with Alzheimer's disease. The Random Forest classifier produced 
an area under the curve for the ROC (AUC-ROC) of 0.98, a 
balanced accuracy of 0.94, and an F1 score of 0.94 at a threshold 
of 0.55, indicating excellent discrimination within a sample that 
had a significant imbalance in the number of decliners and non-
decliners. These findings were achieved without the use of 
sophisticated biomarkers such as cerebrospinal fluid (CSF) Aβ₄₂ or 
neuroimaging, suggesting that this model presents an accessible 
strategy for identifying individuals at risk of cognitive decline 
given the growing enormity of the ADRD epidemic with 
projections of 139 million cases globally by 2050, particularly in 
low- and middle-income countries (LMICs) where dementia cases 
disproportionately arise due to extreme levels of economic 
disadvantage [5, 17]. The baseline characteristics of decliners were 
very distinct from non-decliners. Decliners had a significantly 
lower average MMSE score (21.0 vs. 26.0; p<0.001) with 
increased variability and presence of outliers when compared to 
non-decliners. This is continued in historical data from the NACC 
that suggest MMSE scores of less than 20 are associated with an 
70-80% likelihood of progression to the next stage of AD [15, 18]. 
Additionally, a number of demographic factors indicated that 
decliners are older than non-decliners (77.1 vs. 74.5; p<0.001) and 
have lower levels of formal education (14.8 years vs. 15.6 years; 
p=0.002). Although there is a modest correlation between 
education and age (r=-0.12), the significant overlap of these two 
demographic groups is consistent with the tenets outlined in 
cognitive reserve theory where education may mitigate the effects 
of age-related neurodegeneration by 7-11% per year [3]. 

The clinical utility models outperformed the cognitive based 
benchmarks AUC 0.85-0.90 [11, 17] and approached the 
benchmark, while also accounting for additional biomarker AUC's 
(AUC ≈ 0.92[9, 17]) which is comparable to the predictive 
performance reported for CSF biomarkers in prior studies (AUC ≈ 
0.88–0.92 [17]), despite relying solely on routine clinical 
assessments. The upper left correlation to the ROC curve illustrates 
optimal MCI triage when compared to FDA's co-primary cognitive 
& functional endpoints [9, 10] with regard to sensitivity of 0.94 
and a false positive rate of 0.07. The use of prediction matrix 
metrics (Positive Predictive Value 0.93, Negative Predictive Value 
0.94) means that through superior decliner selection, the trials 
could experience a 30-40% reduction in enrolment as echoed by 
O'Bryant et al. regarding efficiencies of clinical dementia rating 
scale-staging [10, 17, 18]. A closer examination of the Gini index-
-upon linear combination--highlighted CDR-SB (0.38) and MMSE 
(0.28) as being the most clinically relevant variables accounting 
for over 66% of the variances in predicting clinical decline; this 
substantiates their reliability as measures of staging, as the increase 
in CDR yields a corresponding doubling of the odds of 
'progression' whereas MMSE reflects total functionality within the 
clinical realm. Sociodemographic information (age 0.20, 
education/gender combined ~0.19) ranked lower. The level of 
uniformity among this cohort is similar to the backgrounds of those 
in less developed nations, although the applicability of Vascular 
Modifiers would greatly increase their potential utility [5, 8].  

As a deployable Python tool for use in primary care, the large 
number of individuals receiving comprehensive diagnostic 
evaluations will be reduced by 50-70% in terms of late diagnoses 
and EoD inequities; furthermore, the scarcity of care, coupled with 
the economic burden placed upon these individuals, make early 
intervention urgently needed, especially in light of the 27% 
reduction in Alzheimer's progression seen with lecanemab and 
donanemab and the WHO call for a scalable approach [1, 4]. 

The following limitations will need to be addressed—although 
the NACC is heavily skewed towards patients residing in the 
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United States, thus extrapolation to LMICs will be difficult; the 
model's assumption regarding intra-CDR homogeneity, 
vulnerability to having multiple comorbidities (5-10% may reduce 
performance), and the need for more external validation within the 
ADNI/NACC and other studies [5]. 

The future study of Alzheimer's Disease should involve 
multiple methods of evaluating the disease pathology and provide 
the opportunity for low- and middle-income countries (LMIC) to 
benefit from transfer learning. Through the modelling of 
Explainable Artificial Intelligence (XAI), there will be an increase 
in the use of XAI technologies to provide a transparent view of 
how and why the disease will progress. In conclusion, the Random 
Forest model provides a high level of accuracy in predicting 
decline due to Alzheimer's. As a result, the Random Forest model 
has the potential to offer all persons afflicted with ADRD a more 
equitable approach to experiencing the disease. 

 

4. Conclusion 

A machine learning model built from five commonly used 
clinical characteristics (age, gender, educational level, initial Mini-
Mental State Examination score, and Clinical Dementia Rating 
Sum of Boxes score) can successfully identify cognitive decline 
due to Alzheimer Disease with 94% efficacy. The machine 
learning method also showed benefit using readily available 
clinical assessments with an excellent area under the curve (0.98). 
The absence of invasive or expensive laboratory tests indicates that 
machine learning may represent a valuable resource for predicting 
early-stage persons at high risk of developing Alzheimer Disease 
in countries with limited resources. 

The results from the machine learning model show strong 
internal validity when tested on the National Alzheimer's 
Coordinating Center database, however, validation needs to focus 
on the generalizability of these findings to a larger, more diverse 
global population, including low-and middle-income nations. 
Collaborating with additional datasets and integrating emerging 
blood tests either at baseline or along with the evaluated tests could 
greatly improve early recruitment of participants in clinical studies 
and enable timely medical treatment of participants, especially 
now with the availability of disease-modifying anti-amyloid 
medications. 
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