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A B S T R A C T 
 

A R T I C L E    I N F O R M A T I O N 

Battery electrode materials have advanced significantly, enabling the advancement of 
efficient energy storage systems. Throughout this mini-review, we emphasize 
innovations in lithium-ion batteries, emerging technologies, and the latest 
developments in anode and cathode materials. Several breakthroughs have been 
achieved, including the creation of electrodes that offer high voltages and flexibility, 
the development of metal–organic frameworks and derivatives to enhance electrode 
performance, and advancements in silicon-based anodes that address capacity and 
cycle life issues. Furthermore, the review highlights the shift from traditional 
intercalation materials to conversion-type electrodes, which provide increased specific 
capacities but are more challenging to stabilize. Additionally, new materials have been 
integrated to improve energy density, safety, and charging speed of solid-state 
batteries. A range of strategies, including doping, coating, and the integration of 
nanomaterials, is being utilized to address issues like material scarcity, safety 
concerns, and environmental effects. This review provides an extensive summary of 
current materials, synthesis techniques, and electrochemical mechanisms, along with 
future directions for developing effective electrodes aimed at producing long-lasting, 
efficient batteries with high energy density for upcoming applications. 
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1. Introduction 

In recent years, the demand for high-energy, safer, and longer-
lasting rechargeable batteries has increased significantly, fueled by 
portable electronics, electric vehicles, and renewable energy 
storage solutions [1, 2]. Electrode materials are essential to these 
developments, substantially influencing the batteries' 

electrochemical performance, stability, and overall efficiency [3]. 
Advancements in electrode materials address challenges such as 
capacity fade and mechanical deterioration while also reducing 
production costs, paving the way for the next generation of high-
performance batteries [1, 4].  

The current market is largely influenced by conventional 
batteries that utilize inorganic cathode materials, primarily lithium 
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iron phosphate and lithium cobalt oxide [5]. While these materials 
are effective, they also present challenges such as limited capacity, 
high production costs, and concerns regarding the safety of toxic 
metals [4]. Consequently, researchers are exploring alternative 
materials, including polymeric electrodes, which offer advantages 
like enhanced capacity, structural adaptability, and eco-
friendliness [6]. Additionally, metal-based electrodes, such as tin 
foams, have emerged, surpassing traditional graphite electrodes in 
mechanical strength and charge storage abilities. These 
advancements are part of a broader initiative to diversify electrode 
chemistries to overcome the limitations of existing materials [4].  

In the development of electrodes, modifying surface properties 
and engineering structures have become essential strategies that 
transcend material composition [7]. For instance, creating model 
electrodes with controlled morphology facilitates a deeper 
understanding of lithium-ion storage, while surface coatings 
enhance battery lifespan and interface stability. Furthermore, 
innovative crystalline structures, such as those found in niobium 
pentoxide electrodes, show great potential for accelerating 
charging times and increasing storage capacity by promoting 
lithium-ion transport and reducing degradation issues like lithium 
plating. These approaches underscore the importance of 
integrating electrochemical engineering with materials science to 
optimize electrode performance [8]. 

Despite these advancements, challenges persist in attaining 
optimal electrode performance, such as difficulties with material 
production, scalability, and safety [1]. Thorough evaluations 
highlight the necessity of tackling these issues through methods 
like doping, coatings, nanostructuring, and interface engineering 
to improve energy storage efficiency and extend battery lifespan 
[4, 9]. Additionally, developing durable, high-energy rechargeable 
batteries depends on the incorporation of effective electrolytes and 
the establishment of safety protocols [1, 10]. 

This article presents a comprehensive review of recent 
advancements in battery electrode materials, focusing on 
improvements in both cathode and anode performance. By 
analyzing progress and ongoing challenges, it seeks to provide 
insights into future research directions for electrode materials that 
will meet the changing needs of energy storage technologies across 
a range of applications, including consumer electronics, electric 
vehicles, and grid storage. 

 
2. Types of electrode materials 

Organic and inorganic electrode materials are essential in 
battery technology, each presenting unique benefits and 
challenges. Organic materials, made from carbon-based 
compounds, offer flexibility and sustainability, whereas inorganic 
materials, which are usually metal-based, provide high energy 
density and stability. Battery technology utilizes organic and 
inorganic electrode materials, each presenting advantages and 
disadvantages. Inorganic materials, typically composed of metals, 
provide stability and high energy density, while organic materials, 
consisting of carbon-based compounds, offer flexibility and 
sustainability. 

2.1. Inorganic electrode materials 

Inorganic materials offer numerous benefits over organic 
molecules, including larger surface areas, enhanced electrical 
conductivity, greater thermal stability, more active sites, and 
higher capacities, thereby broadening their potential for energy 
storage [11]. The development and efficiency of batteries, 
especially LIBs and emerging technologies like magnesium, 
aluminum, and sodium-ion batteries, depend significantly on 

inorganic electrode materials. These materials serve as cathodes or 
anodes, prized for their substantial theoretical capacities, ability to 
undergo multi-electron redox reactions, and structural stability. 
They typically include metal oxides, phosphates, or polyanion 
compounds [12]. For instance, inorganic cathode materials like 
lithium manganese oxide (LiMn2O4) and lithium iron phosphate 
(LiFePO4) are widely used due to their environmental friendliness 
and relatively high discharge capabilities. However, they face 
challenges such as capacity fading caused by the dissolution of 
transition metals and high manufacturing costs related to 
complicated synthesis and limited raw materials [12].  

Many inorganic nanomaterials, including metal oxides, metal 
phosphides, and oxysalt nanoparticles, have been extensively 
studied as LIB electrode materials [13, 14]. These nanoparticles' 
small size allows for a decrease in the diffusion channel between 
lithium ions and the collective electrode tension (mechanical 
stress/strain) brought on by Li insertion and removal [14]. 
However, their relatively low conductivity, especially in weak 
contact, is a serious problem [13, 15].  

2.2. Organic electrode materials 

Conducting polymers, radical, organosulfur, conjugated 
carbonyl compounds, and other redox-active organic materials 
with promising electrochemical characteristics were effectively 
introduced by the initial progress of organic electrodes [16]. 
Because they are made of lightweight, plentiful materials, batteries 
based on organic electrode materials have been regarded as a 
highly eco-friendly alternative to inorganic electrode materials. 
Additionally, their cost is lower than inorganic materials [17]. Fig. 
1 displays the structure formula for a low-cost organic electrode 
material. 

 

Fig. 1. Formula for the structure of certain inexpensive organic electrode 
materials. (A) For flow batteries, 9, 10-anthraquinone-2, 7-disulfonic acid. 
(B) A triangular macrocycle based on phenanthrenequinone that is redox 

active. Phenazine-5,10-diyl) dibenzoate, 4, 4-. (D) The Zn-organic battery's 
phenazine component [28]. 

One of the component parts of current electrodes, cobalt, is 
categorized as an essential raw material. Processing inorganic 
minerals is a particularly energy-intensive operation. On the other 
side, because the biomass may produce new precursors, organic 
materials may be thermally recycled [18]. Additionally, the 
organics' real electrochemical performance is not worse. Because 
of the light elements, they have a large gravimetric capacity and a 
very high rate of charge and discharge [19, 20]. However, there are 
still certain issues that need to be resolved, even though organic 
materials have several advantages as substitute electrode materials 
in LIBs [21]. Their often low electronic conductivity is a 
significant obstacle that may restrict the battery's overall 
performance and rate capabilities [16, 22]. For organic cathode 
materials, cyclability and stability are also important factors. A 
shorter battery life and capacity fading can result from some 
organic compounds' low stability after repeated cycles of charging 
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and discharging [23-25]. Additionally, some organic cathode 
materials have trouble becoming soluble in the electrolyte. Over 
time, capacity loss and electrolyte degradation may arise from 
dissolving the active molecules in the electrolyte [26, 27].  

 
3. Recent advancements in electrode materials  

Recent developments in electrode materials have greatly 
improved energy storage and conversion devices' sustainability 
and performance [29]. This section briefly overviews current 
developments in sodium-ion, lithium-ion, and multivalent ion 
battery electrode materials. 

3.1. Lithium-ion batteries (LIBs) 

Electrode processing greatly impacts manufacturing cost, 
throughput, and Cell energy density, which is crucial to developing 
lithium-ion battery technology. However, there hasn't been nearly 
as much work done in this field as there has been in materials 
development [30, 31].  

3.1.1. Innovations in anode and cathode materials 

Several breakthroughs have been made in lithium-ion batteries' 
materials used as anodes and cathodes. Table 1 shows some of the 
innovations in this field. 

3.1.2. Role of metal-organic frameworks (MOFs) 

In addition to having the functional properties of both an 
organic ligand guest and a metal ion host, metal-organic 
frameworks (MOFs), as well as their derivative materials, also 
provide the benefits of wide surface area, tunable porosity, 
structure, and composition [49, 50]. Within the energy sector 
storage, they have excellent application potential when used along 
with suggestions for electrode material design [51]. MOFs are 
more ordered than typical materials, and their structural diversity 
and flexibility can be effectively controlled by the organic ligands 
and metal ions that may be adjusted. The storage and transfer of 
lithium ions are made easier by the bigger space and appropriate 
channel that MOFs' porosity may create [52]. Stable active centers 
and activity can be created using the component design and 
nanostructure of MOF composite materials to create effective, 
long-lasting electrode materials [53]. Nevertheless, MOFs have 
low conductivity. MOFs must be electrochemically modified in 
order to enhance their electrochemical characteristics and 
conductivity [54]. To improve the chemical stability of LIB 
applications, MOF-derived materials are required to mitigate the 
disadvantages of MOFs' low conductivity while preserving their 
advantages [49]. Bai et al. [55] have employed MOFs as dividers 
in Li–S batteries to reduce shuttling problems (Fig.2). Due to its 
well-organized micropores, which have a size window of 

approximately 9 Å, significantly smaller than the diameter of 
lithium polysulfides, HKUST-1 was selected for this study's 
MOF@GO separator fabrication. This characteristic contributes to 
the separator's claimed suitability to block polysulfides and sieve 
Li selectively ions, with structural stability and reliability observed 
under electrochemical conditions.  

 

Fig. 2. Schematic diagram of a MOF@GO separator in Li-S batteries [55]. 

3.2. Multivalent ion batteries 

Rechargeable multivalent ion batteries (MIBs) are the best 
energy storage technology for grid-scale applications because they 
are less expensive than lithium (Li)-ion batteries [56]. Regarding 
cost, volumetric energy density, and safety, MIBs that transmit 
Ca2+, Zn2+, Al3+, Mg2+, and other charge carriers have emerged as 
an intense research interest. They are becoming more and more 
appealing options for grid energy storage [57-59]. However, 
because of the difficulties associated with the restricted 
multivalent-ion diffusion kinetics, they are still far from becoming 
mature [59].  

3.2.1. Development of organic and inorganic materials 

Organic electrode materials (OEMs) are versatile, high-
performing electroactive materials used across various 
rechargeable battery systems because of their availability, ease of 
use, affordability, sustainability, and recyclability. Advanced 
rechargeable battery development is made possible by the wide 
structural variety and the ability to tune OEMs, composed of light 
components that are abundant on Earth, including H, O, C, S, and 
N [60-63].  

The functional group that is active, not the crystalline structure, 
determines the electrochemical performance of OEMs, in contrast 
to inorganic electrode materials. The varied molecular structures 
and unique electrochemical properties of OEMs contribute to their 
strong electrochemical performance in lithium-ion batteries (LIBs) 
and other applications [63, 64].While the energy density of organic 
energy materials (OEMs) is not yet on par with that of inorganic 
materials used in lithium-ion batteries (LIBs), their low cost, 
widespread availability, and structural adaptability make OEMs 
excellent candidates for affordable and sustainable energy storage 
solutions [64].  

Table 1 
Innovations in anode and cathode materials in LIBs. 

 Material types Advantages Refs. 
Innovations in anode 
materials 

Silicon-based anodes High theoretical capacity but volume expansion 
challenges 

[32-36] 

Carbon-based nanomaterials (graphene, reduced 
graphene oxide) 

Conductivity and stability [37-39] 

Metal oxides and sulfides (Fe2O3, MoS2) High theoretical capacity but issues with volume 
change and conductivity 

[40, 41] 

Metal oxide-carbon hybrids Combining the advantages of both components [42] 
Mxenes (2D transition metal carbides) High conductivity and fast lithium-ion transport [43] 
Perovskite-like hybrid anodes based High Li storage capacity and tunable properties [44] 
Electrospun nanofiber anode materials Improving rate capability and cycling stability [45] 

Innovations in cathode High voltage spinel cathodes like (LiNixCoxM1-x-yO2) Offering high rate and energy density [46, 47] 
Diverse cathode materials explored Improved voltage and capacity [48] 
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3.2.2. Performance comparisons with traditional 
batteries 

Cost and safety are crucial considerations when using battery 
technology for extensive stationary electrical energy storage. 
Unfortunately, the high toxicity of Pb/PbO2 and the scarce and 
unequally distributed lithium resources hinder the development of 
LIBs and lead acid batteries (LABs), respectively [16, 65-67]. 
Many people are looking forward to another advancement in 
battery technology that will result in energy storage systems that 
are safe, affordable, and environmentally friendly. Since 
multivalent metals and OEMs are inexpensive and plentiful, 
organic multivalent rechargeable batteries (MRBs) are a possible 
substitute for LIBs and LABs [64].  

3.3. Sodium-ion batteries 

Similar to LIB, NIB operates by having Na ions move between 
two electrodes that house Na ions via an organic liquid electrolyte 
while a voltage is applied [68]. At the laboratory scale, NIBs 
perform almost as well as commercial LIBs regarding cycle life, 
power density, and energy density [69-71]. Several layered oxide 
cathodes, for instance, have been shown to achieve an extended 
lifecycle of several hundred cycles, a high rate of 30 °C, and a high 
capacity of 190 mAh g-1 [70, 72-74]. Recent NIB research projects 
showed potential for developing NIB systems that function 
similarly to LIBs [75].  

 
4. Conclusion 

The advancement of efficient energy storage systems has 
dramatically accelerated due to recent advancements in battery 
electrode materials. The limitations of conventional materials like 
graphite have been addressed through innovations in anode and 
cathode materials, including composites, which have significantly 
improved energy density, charging speed, and cycle life. Research 
continues to focus on new synthesis methods, coatings, and 
targeted doping to tackle challenges related to cost, safety, and 
resource scarcity. Increased capacities are expected as the industry 
shifts from traditional intercalation processes to conversion-type 
reactions; however, further research and engineering will be 
necessary to ensure stability and longevity. The combination of 
material innovation and architectural redesign is making next-
generation batteries with quicker charging, longer lifespans, and 
wider applications in electric vehicles, grid storage, and portable 
gadgets possible. However, more research and scalable 
manufacturing techniques will be needed to turn these discoveries 
into economically feasible, effective, and sustainable energy 
storage technologies. 
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