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ABSTRACT ARTICLE INFORMATION

It has been discovered that two-dimensional (2D) materials possess tunable electronic
properties and abundant active sites, making them ideal for catalysis. This
comprehensive review examines the use of 2D materials as catalysts and catalyst
supports in energy conversion and environmental remediation. This field is
characterized by the ability to enhance catalytic activity and selectivity through the
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engineering of defects, heterostructures, and hybrid composites. Despite these 2Ie)y ﬁi:e:ials
advances, challenges remain in scaling up synthesis, achieving structural stability Gkt

under reaction conditions, and translating laboratory discoveries into industrial
applications. By developing advanced characterization techniques and understanding
structure-activity relationships, we can fully exploit the potential of 2D materials for
catalysis.
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1. Introduction materials such as black phosphorus and MXenes, has been
extensively explored [4, 5]. These materials can act as catalysts
themselves or in conjunction with atomic catalysts, making them

versatile components of catalytic systems. Catalysts can be

A unique combination of structural and electronic
characteristics has led to the emergence of 2D materials as an

innovative class of catalysts [1]. Due to their atomic thin nature,
these atomically thin catalysts have high surface-to-volume ratios,
abundant active sites, and tunable electronic properties, making
them ideal for a broad range of catalytic processes, from energy
conversion to environmental remediation [2, 3]. The structure of
2D materials prendering them more efficient than bulk catalysts
[2]. The catalytic potential of graphene, along with transition metal
dichalcogenides (TMDs) like MoS, and WS,, as well as other 2D

precisely designed and optimized using their well-defined atomic
structures, allowing for the investigation of structure-function
relationships [3, 6]. There has been significant progress in the
electroreduction of CO, into valuable fuels and chemicals, aided
by 2D materials for photocatalysis, electrocatalysis, and
thermocatalysis [2]. As an example of enhanced catalytic activity,
2D MoS; has exposed edge sites and tunable electronic structures
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that can be further adjusted through doping and structural
modulation [2, 3].

There are numerous potential applications of 2D materials,
including energy conversion and environmental remediation.
Although these developments are promising, translating 2D
materials into practical catalytic systems still faces several
challenges. Industry applications are limited by the inability of
synthesis methods to scale up and be reproducible [7, 8].
Furthermore, to design rational catalysts, advanced
characterization and theoretical modeling are required to
understand the complex structure-activity relationships in multi-
component 2D systems [8]. A wide range of 2D materials can be
utilized in catalysis, from traditional chemical reactions to
emerging fields such as sustainable energy conversion and
environmental protection [9].

The versatility of these materials enables them to be
functionalized and hybridized with other materials, extending their
applicability across various applications. In order for multi-
functional catalysts to realize their potential, advanced synthesis
techniques, surface modifications, and multifunctional catalysts
must be researched and developed [9, 10]. 2D materials have been
extensively studied for their catalytic applications. Their unique
properties and roles in various catalytic processes are discussed in
this review. In addition to highlighting innovations and challenges,
it encourages further research and industrial adoption of 2D
catalysts by emphasizing opportunities and obstacles.

2. Catalytic properties of 2D materials

There are numerous examples of catalysis in nature and
artificial chemical transformations that impact the chemical
industry and shape our lives. This 2D material possesses a high
specific surface area, making it ideal for catalysis [8, 11]. Due to
their large lateral dimensions and atomic thickness, 2D materials
provide ultrahigh surface areas, maximizing active sites and
surface atoms, which accelerates the rate of reactions. In surface-
related applications like catalysis, 2D materials hold significant
potential [12]. A single-layer exfoliated layered double hydroxide
(LDH) of NiFe and NiCo demonstrates higher catalytic activity
during electrocatalytic oxygen evolution reactions (OER) than
bulk NiFe or NiCo layers, primarily due to its enhanced
electrochemical conductivity and active sites [13]. Another
advantage of 2D materials is that their surface atoms are
uncoordinated, allowing them to absorb more UV-visible light,
while 3D bulk materials often face limitations due to light
transmission and reflection [14, 15]. As a result of the 2D structure,
photogenerated electrons and holes migrate much faster, reducing
their recombination likelihood and potentially increasing the
quantum yield [16]. The presence of more active sites may also
enhance the performance of photocatalysts. Holy g-C;Ng
nanosheets have been found to exhibit 20 times the photocatalytic
activity for the hydrogen evolution reaction (HER) compared to
bulk g-C;N,, attributed to improved light absorption, more
exposed active sites, and increased separation efficiency of
photoexcited electrons and holes [17]. The materials also exhibit
excellent mechanical properties, allowing the catalyst to be durable
and feature thermal conductivity, which facilitates heat diffusion
during the exothermic reaction. Additionally, 2D materials possess
tunable optical and electronic properties, making them ideal for
catalysis [11, 17]. Currently, these materials are being researched
for water splitting, degradation reactions, nitrogen fixation,
hydrogenation, CO, reduction, and medical catalysis [18].

By modifying their surfaces, doping, engineering defects, and
employing strain engineering, 2D materials will also be able to
control their intrinsic properties at an atomic level, which is not

possible with bulk materials [12, 19, 20]. Fig. 1 illustrates
Properties of 2D Materials.

L7
940%5
q’Q\
£
Catalytic
Properties of
2D Materials
%
%
%,
0,
’)/é 6\#‘&‘@
e, oo®
re

Fig. 1. Properties of 2D materials.

3. Applications of 2D catalysts

The unique physical and chemical properties of 2D catalysts,
including their high surface area, dense active sites, active edges,
enhanced conductivity, anti-photocorrosion properties, and
chemical stability, have made them effective as sensors,
conductive inks, environmental remediators, and energy storage
products [21, 22]. Table 1 illustrates some of the applications and
features of 2D catalysts.

3.1. Energy conversion

Energy storage and conversion benefit from various
advantages [21]. 2D nanosheets can be utilized in numerous
energy-conversion and  storage applications, including
supercapacitors, battery electrodes, electrocatalysis, and
photocatalysis. An energy source, as well as a light source, can
activate nanosheet processes [29, 30]. Photocatalysis can also be
enhanced by trapping electrons or holes in vacancies to improve
carrier separation. Numerous edges of nanosheets possess
unsaturated coordination and dangling bonds, which facilitate the
catalysis of biomolecules. Depending on the electronic structure,
these catalytic sites can be tailored to enhance their catalytic
activity [31].

MdS-Au/MoS, hybrid structures contain many active sites for
hydrogen evolution within the MoS, layers. The hybrid structure
also improves electron-hole separation by transferring electrons
generated by CdS nanorods to the growing MoS, nanosheets and
the Au metal surface [21]. As a potential fuel for transportation,
this strategy may be an excellent option.

3.2. Environmental remediation

In recent years, single-atom catalysts (SACs) have gained
enormous interest due to their rapid development. 2D SACs offer
several unique advantages and can be utilized for environmental
remediation [32]. Moreover, 2D supports can also serve as
substrates for loading various single atoms, generating reactive
species on both planes, which significantly enhances catalytic
activity and capability [33, 34]. By stacking aromatic compounds
on these readily available carbon supports (e.g., graphene, porous
carbon, g-C;N4), we can improve the degradation or
transformation of environmental pollutants, owing to the potential
stacking interactions [33].
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3.3. Sensors

It has been demonstrated that pristine graphene and its
derivatives are highly sensitive to various gas molecules in an
experimental setting. The high electron mobility, high
conductance, and high surface area-to-volume ratio of a 2D
graphene nanosheet all contribute to its superior chemical sensing
performance, including high sensitivity and low noise [35].
Through micromechanical cleavage of graphite, Schedin et al.
created microfabricated graphene devices for detecting common
gases (NO,, NH3, H,0, and CO).

They found that graphene exhibited a wide range of sensor
properties, such as ultra-high sensitivity, fast response times, and
linear responses to adsorbates [35, 36]. Surface doping with
nanoparticles (which enrich the types of adsorbates at the surfaces)
or introducing defects into graphene sheets can enhance adsorption
sensitivity or enrichment [37].

There have been predictions regarding catalytic behavior based
on gas adsorption studies. In Fig. 2, the catalytic behavior is
primarily determined by the adsorption and dissociation of
elements (or groups of chemical compounds) on a material's
surface [38, 39].

4. Opportunities in 2D material catalysis

As technology advances, its rate of advancement may increase
more rapidly in the 21st century than it has in centuries past. In the
age of nanotechnology, new, environmentally friendly,
economical, and sustainable materials are being discovered at an
unprecedented rate [40]. Due to their abundance, two-dimensional
(2D) materials can be used for a wide range of technical studies as
well as various nano- and atomic-level applications [41]. A recent
discovery of graphene has motivated considerable attention to the
study of other novel 2D materials, called modern-day "alchemy,"
where scientists try to convert as many periodic table elements as
possible into 2D material structures [42].

4.1. Novel applications

A heterostructure confers an appealing advantage over an
isolated two in catalysis. Using 2D materials enhances the benefits
of heterostructures. Among the tens of thousands of variations in
electronic and structural elements, there are many opportunities to
tune carrier distribution and mobility to enhance activity [43, 44].

Table 1
Applications and features of 2D catalysts.
2D catalyst type Applications Features/Advantages Refs.
Graphene-based materials D Energy storage D High surface area [6, 8]
. Sensors . Tunable electronic structure
. Fuel cells . Active edges
. High stability
Transition metal dichalcogenides (TMDs, e.g., . Electrocatalysis . High surface area [6, 10, 23]
MoS:, WS:) D Fuel cells D Abundant active sites
. Tunable bandgap
. Exposed edges
Metal (Hydr)oxides o Environmental catalysis o High catalytic activity [3]
. Stability in aqueous media
MZXenes (2D transition metal carbides/nitrides) . Energy storage . Conductivity [24]
. Electrocatalysis (her, oer) . Hydrophilicity
. Batteries . Surface functionality
. Supercapacitors
2D Metal-organic frameworks (MOFs) . Energy conversion . Highly porous [25, 26]
. Electrochemical catalysis . Tunable active sites
. Structural flexibility for selective
catalysis
2D Metal sulfides (e.g., SnSz) . Energy conversion . Stable catalytic performance [6]
. Electrochemical catalysis . Enhanced electron density
. High number of undercoordinated
sulfur sites
Metallenes (2D metals) . Electrocatalysis (HER, . Atomically thin [24]
OER) . High density of active sites
. Energy conversion
Graphitic carbon nitride (g-C5Na) . Photocatalysis . Chemical stability [6,27]
. Visible light absorption
Hexagonal boron nitride (h-BN) . Energy storage . Chemical stability [28]
. Catalyst support . Wide bandgap
. Insulating
Single-atom catalysts on 2D substrates . Selective hydrogenation . Maximized active sites [3]
. Fuel cells . High selectivity
Boron nitride (BN) o Photocatalysis o Chemical stability [4]
. Wide bandgap
. High thermal conductivity
Hydrogen adsorption Hydrogen desorption

Catalyst surface

Fig. 2. Working principle of catalysis of elemental 2D materials.
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Catalytic effects may also arise from defects and dislocations
introduced during heterostructure formation [45]. Creating a
microreactor will be possible at the interface between two
components. Recent progress in designing and developing
heterostructures based on 2D materials should stimulate more
interest and efforts in research. In recent years, novel
heterostructures have been designed using interesting 2D materials
such as graphene, g-C;Ny4, and MoS, [44].

There are also various applications and industries that utilize
2D-material-based manufacturing devices, including high-quality,
high-performance optical encoders. The functionalization of zero-
BG 2D materials primarily addresses stability issues associated
with their use in electronic devices [46]. BG Engineering has
introduced a new set of potential candidates for electronic devices
[42]. Investing in ultra-thin 2D p-n junctions can also be
advantageous for light-sensing and harvesting applications in
nanophotonics [47]. It has been demonstrated that 2D p-n junctions
can function as photodetectors, and several material combinations
exist, enabling the proposal of devices that operate effectively
across wavelengths from infrared to ultraviolet [42].

4.2. Increased efficiency

It is common for 2D materials to exhibit excellent conductivity
and stability during catalytic processes, leading to increased charge
transfer and durability [2]. These properties often make 2D
materials more effective than traditional catalysts for applications
such as water splitting, CO, reduction, or hydrogen evolution [44,
48, 49].

4.3. Integration with other technologies

The integration of catalysts with 2D materials, such as
nanoparticles, will enable a more effective use of 2D materials as
catalysts by exploring innovative structures and hybrid systems [2,
50].

processes, including graphene, transition metal dichalcogenides,
and beyond-graphene systems. Challenges remain in scaling up
synthesis, maintaining stability under operational conditions, and
integrating the catalytic system into a practical setting.

It is important to develop robust and scalable fabrication
methods, enhance the stability and selectivity of 2D catalysts, and
explore novel 2D materials and hybrid structures in the future.
Developing next-generation catalysts will require advanced
characterization and theoretical modeling to understand catalytic
mechanisms and guide rational design. Overcoming these
challenges will unlock the full potential of 2D materials, enabling
their application in energy, environmental, and industrial catalysis
on a large scale.
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