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ABSTRACT ARTICLE INFORMATION
Silica nanoparticles (SiNPs) consist primarily of silicon dioxide and has many Article History:
qualities, such as selectable particle size, high surface area, and good biocompatibility Received 24 June 2024

that make them ideal for additional biomedical usage. SiNPs are becoming
increasingly popular amongst researchers for their ability to retain thermal stability

Received in revised form 01 September 2024
Accepted 13 September 2024

and exist in a variety of platforms, such as chromatography, medicine and optics.
Advances and growth in the area of nanobiotechnology have alluded to both function
and modification of SiNPs through their surface and as structures. One of the most
promising uses of SiNPs is the development of therapeutics to target disease like
cancer, respiratory and cardiovascular diseases. One of the additional benefits of
SiNPs are the ability to also function as carriers of imaging agents, for enhancing
medical imaging and imaging modalities like fluorescent imaging, and possibly
imagers of the future for early detection of cancer. Mesoporous silica nanoparticles
(MSNs) are a subclass of SiNPs, developed to provide controlled drug release with
optimal cellular selectivity. What this research highlights are the versatility of SiNPs
as applications and devices in modern biomedicine science approaches.
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1. Introduction

Nanotechnology has been characterized as one of the most
advanced technologies [1]. Every nanomaterial shows different
(physical, chemical, and biological) characteristic properties than
their bulk counterparts because they are so small with a high
surface area-to-volume ratio. These unique properties allow
nanomaterials to be applied to many fields of science (physics,
chemistry, biology, engineering, etc.), and they have significantly
altered many of our day to day experiences including healthcare,
food, cosmetics, electronics, and energy [2]. Moreover, within the
last decade with advances in biomedicine and nanotechnology,
nanomedicine has emerged rapidly. Amongst many nanoparticle
materials, silica nanoparticles (SiNPs) in particular have many
advantageous properties including high surface area, selectable
pore size, easy functionalization and high biocompatibility [3].

SiNPs are nanometric, inorganic prototype materials (1 - 100
nm) that are synthetically engineered. SiNPs have high surface
area, ease of synthesis and modification, and are quite effective for
therapeutic agent delivery [3]. Silica is one of the Earth's most
abundant materials, and its nanoscale form, (SiO,),, often forms
chain-like structures that resemble a three-dimensional solid. In
these chains, some silicon atoms may not achieve full fourfold
coordination, while others reach three- or twofold coordination
with oxygen atoms. For certain sizes (n > 12), these chain-like
arrangements are particularly prevalent, and dangling bonds may
occur, possibly affecting interactions with other species. Its
nanoparticles are widely utilized in pharmaceuticals, as in boost
formulations and as enterosorbents. Binding sites could be utilized
to target localized areas (tumor sites) for treatment [4].

This paper provides an overview of the biomedical
implementations of silica nanoparticle compounds and reports on
the state of the arts, discusses developments made, areas of concern
and consideration still, and future suggestions and modifications
for improvement and ultimately multifunctional development for
diagnosis, therapy and pro-disease development measures.

2. Properties of silica nanoparticles

2.1. Structure and chemical composition

SiNPs have received ample attention thanks to their remarkable
structural pliability and chemical stability [5]. SiNPs essentially
have an amorphous silicon dioxide (SiO,) matrix as their base
structure, which can offer notable porosity and thermal stability
[6].

SiNPs are largely constituted of an amorphous 3D network of
interconnected SiOy tetrahedrons that are linked together with Si—
O-Si (siloxane) bonds. The disorder within the amorphous
structure is attributable to irregular bonding, which accommodates
a variety of pore sizes and reactive surface areas. The unique
structural heterogeneity of SiNPs introduced silanol and siloxane
groups that are critical for surface modifications, ensuing
biological interactions, and contributing to the hydrophilic and
chemically tunable nature of SiNPs wherein they are aimed at
biomedical applications [7].

The surface of SiNPs is composed predominantly of silanol
groups (-SiOH), which are imperative for functionalization. The
silanol groups allow for hydrophilicity and an array of chemical
modifications to achieve multiple functionalities [8]. Surface
engineering technology can allow SiNPs to be functionalized with

various polar organic groups to improve targeting delivery and
biocompatibility/effectiveness. For example, PEG coating can
improve circulation time of SiNPs whilst minimizing the immune
system detection [9].

Surface modification of SiNPs involves processes that alter
their chemical composition. This can be achieved either through
physical methods like thermal or hydrothermal treatment, affecting
the silanol-to-siloxane ratio, or via chemical methods that directly
change the surface’s chemical properties [10]. Fig. 1. shows
schematic of antibodies, peptides, enzymes, aptamers, DNA
fragments, etc. for functionalizing the SiNP surface.
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Fig. 1. Schematic of antibodies, peptides, enzymes, aptamers, DNA
fragments, etc., for functionalizing the SiNPs surface.

Uniform SiNP spheres can be synthesized through controlled
hydrolysis and condensation of alkoxysilanes like TEOS under
alkaline conditions, known as the Stober method. By adjusting
variables such as ammonia concentration, solvent, and
temperature, the particle size can be precisely tailored [11].

The link between structure and properties is essential, as
mesostructured SiNPs can be shaped into spheres, rods, or
ellipsoids, affecting how they are taken up by cells and distributed
in the body. Overall, SiNPs combine stable SiO, frameworks,
surface silanol chemistry, and customizable porosity, making them
highly adaptable for diverse applications [9].

2.2. Physical and chemical properties

SiNPs offer distinct advantages for adsorption applications
over other materials, owing to their stable structure, high surface
area, adjustable porosity, surface silanol groups that facilitate easy
modification, eco-friendliness, simple synthesis, and low
production cost [12].

SiNPs exhibit a high surface area, tunable size and porosity and
acceptable biodegradability from the perspective of specifically
addressing their physical characteristics. The sizes, volumes, and
surface chemistry of SiNPs all contribute to their flexibility in
many applications.

The density of SiNPs depends on its condensation, measuring
around 2 g/cm?, and the refractive index is 1.43, which confers
possible utility in optical technologies [6].

Chemically, SiNPs are characterized by passive compatibility,
heat resistance, and good chemical properties in addition to their
mesoporous structure. Combining all three facilitates drug loading
and controlled release in a biomedical context [13]. Even when
their chemical properties appear strong, mesoporous SiNPs can
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also be biodegraded into biological settings such as by gradual
dissolution to Si(OH)s, which is especially beneficial in the
biomedical application context[13]. Rahman et al., [14] showed
that adjusting from approximately 130 nm SiNPs to 7 nm SiNPs
augments the apparent surface area, silanol content, and apparent
density. These reductions also cause nanoscale impulse changes as
aresult of SINPs, such as decreased Si—-O—Si bond angle and defect
creation (i.e., E centers and oxygen deficient), and allow optical
and physicochemical properties to differ greatly from bulk silica.
SiNPs have the advantage of demonstrating optical transparency,
chemical inactivity, and retention in physiological environments
this enables imaging to be a consistent advantage [9, 15].

2.3. Biomedical properties of silica nanoparticles

MSN-based nanomaterials are applied across multiple disease
areas: anti-infective therapy (bacterial infections), antioxidant
therapy (Alzheimer’s disease), metabolic disease therapy
(osteoporosis) and tumor therapy. Fig. 2 focuses on these disease
areas and the application of MSNs. Specific MSN strategies
include but are not limited to enzyme-like catalytic therapy,
radiotherapy, thermotherapy, chemotherapy, dynamic therapy,
multimodal synergistic therapy, immunotherapy and gene therapy.
In this context, the wide range of strategies embraces the flexibility
of MSN systems to deliver diverse therapeutic modalities through
a targeted, controlled, and combinatorial approach [16].
Additionally, a rich research domain has explored methods of
surface modification to improve targeting efficiency and
biocompatibility of silica nanoparticles for application in
biomedicine. Specific ligands (antibodies, peptides, or small
molecules) can be attached to the nanoparticle surface, ultimately
allowing silica nanoparticles to actively target tumor cells
compared to non-targeted nanoparticles, while limiting off-target
interactions and increasing therapeutic precision [17]. In cancer
treatment, for instance, mesoporous silica nanoparticles are often
designed to be stimuli responsive, where stimulus-responses can
be engineered to release the therapeutic payload following tumor-
specific conditions, e.g. acidic pH, redox gradients, or enzyme
activity. Stimulus-mediated release limits systemic toxicity while

Applications in disease therapy

e
Amyloid plaques _ .“}
A

) A

Alzheimer's disease
Antioxidant therapy

= Biofilm
Epithelial cells

Bacterial infection

Anti-infection therapy

SR
Tumor therapy

Osteoporosis
Metabolic disease treatment

improving the efficacy of the treatment [18]. Silica nanoparticles
also have an important role in diagnostic imaging applications.
When doped with fluorescent dyes or magnetic materials, silica
nanoparticles are useful in new multimodal imaging techniques
such as MRI, fluorescence imaging, and PET. With this multi-
functionality, there is potential for real-time imaging of
biodistribution and therapeutic outcome of nanoparticles which
dynamically combines diagnosis with therapy [19].

As new therapeutic strategies evolve, the simultaneous
assembly of drug and gene within a single silica nanoparticle
platform has emerged. The co-delivery could provide a synergistic
effect against cancer therapies, and in general, it provides a
versatile and multi-functional therapeutic modality.

A critical aspect when utilizing silica nanoparticles for
biomedical applications is their biodegradability. Biodegradable
particles are slowly biodegradable into non-toxic silicic acid
reducing long-term toxicity [13].

A number of studies have stated that biodegradable
nanoparticles degradation and longevity will rely on factors like
size, porosity, and surface coatings that impact distribution,
accumulation, and clearance profiles in vivo [20]. The subsequent
clearance of nanoparticles is paramount for the clinical safety of
silica nanoparticles. In general, particles or smaller than about 5.5
nm can be excreted through the kidneys, which greatly decreases
the likelihood of nanoparticles from accumulating in other organs
in the body, however larger or non-degradable nanoparticles will
be retained by the liver and spleen at a greater risk. The FDA, along
with many other regulatory organizations, emphasizes prompt
clearance of injectable agents. Therefore, it appears SiNPs that are
biodegradable and renally excretable can be more acceptable
clinically due to diminished bioaccumulation and enhanced
biocompatibility [13]. To back up these claims, Bimbo et al. [21]
showed that thermally hydrocarbonized porous silicon
nanoparticles had good in vivo stability, and low levels of
cytotoxicity and immunogenicity. In animal studies, irrespective
of delivery method, oral delivery of particles appeared to pass
intact through the GI tract, and when injected intravenously caused
rapid accumulation in the liver and spleen, suggesting they could
be safe and promising carriers for oral drug delivery.

MSNs-based therapeutic modality
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Fig. 2. MSNs for disease treatment: anti-infective, antioxidant, metabolic, and tumor therapies. Current MSN approaches include enzyme-like catalysis,
radiotherapy, thermotherapy, chemotherapy, dynamic therapy, multimodal therapy, immunotherapy, and gene therapy [16].
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3. Synthesis techniques for silica nanoparticles
3.1. Chemical methods

3.1.1. Sol-gel method

The sol-gel process is a common method used to synthesize
SiNPs. It involves the transformation of a colloidal suspension
(sol) into a gel network structure. A sol is a liquid medium
containing nanoscale colloidal particles (1-100 nm) and gel is a
structure with a continuous interconnected solid network that
contains sub-micron pores and polymeric chains. The sol-gel
process can be categorized into two sections based on the type of
precursor materials used, inorganic precursors like chlorides,
nitrates, sulfides, and alkoxides [22]. Fig. 3 shows schematic of
the sol-gel chemical method for silica formation.
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Fig. 3. Schematic of the sol-gel chemical method for silica formation [23].

Tetraethyl orthosilicate (TEOS) is a frequently used precursor
in sol-gel potentially producing silica-based nanoparticles. The
TEOS precursor undergoes hydrolysis, producing silanol
functional groups (Si—OH) that can condense and polymerize
either with one another or ethoxy groups to form siloxane
functional groups (Si—-O-Si). Siloxane functional groups are a core
unit in producing the overall silica network [24]. Jafarzadeh and
co-workers [25] developed a modified sol-gel method for the
preparation of silica nanoparticles, and materials formed using sol-
gel methods can exhibit different properties depending on the order
of the mixing components and the drying method. The authors
used a Mode-A mixing method in which TEOS and ethanol were
mixed before adding water, and this method produced
monodispersed particles with an average size of 10.6 nm. They
additionally determined that freeze-drying not only preserved the
surface morphology of the nanoparticles formed but also increased
pore size, pore volume, and water desorption efficiencies
ultimately improving the quality of the produced powders.
Additional work by Dabbaghian [26] used a sol-gel precipitation
method to investigate how different synthesis parameters affect the
size of the produced nanoparticles and examined the effects of
ethanol concentration, temperature, TEOS quantity, and the
presence of ammonia. In the study, it was found that ethanol has
the largest effect on particle size, and increased temperature
generally decreased particle size. They also determined that the
nanoparticles had the most uniform size distribution at the smallest
nanoparticle dimensions, emphasizing how precisely controlled
conditions are critical for achieving size uniformity in SNPs
synthesis.

3.1.2. Microemulsion technique

The technique of water-in-oil (W/O) microemulsion has
become a robust and popular technique for synthesizing

nanoparticles with controlled morphology and uniform size. A
W/O microemulsion system is an isotropic, thermodynamically
stable, single-phase mixture, composed of water, oil, and
surfactant, an amphiphilic molecule to reduce the interfacial
tension between the water and oil phase to allow for the formation
of a transparent solution. Within this system, nanodroplets of water
that are suspended in the oil phase serve as nanoscale reactors for
particle formation. These droplets typically form spherical waters
pools, and the size defined (usually defined by the Wo value: water
to surfactant molar ratio) will determine the size of the resulting
nanoparticles, where larger Wo values will usually give larger
particle sizes [27].

Because of the confined nanoscale environment, this W/O
microemulsion is a great media for environmentally friendly,
controlled size and shape synthesis of functional and structured
nanoparticles. In the recent years this method has shown diverse
silica nanostructures such as core-shell and homogeneous
dispersions, frequently within one system [28].

A research study, espoused by Darbandi et al. [29] utilized a
somewhat different variation of this methodology and in this case,
an oil-in-water (O/W) microemulsion method where cyclohexane
was the oil phase and Synperonic NP-5 was used as the surfactant.
This study produced monodispersed, luminescent silica
nanoparticles that had quantum dots in the core. The results
showed that reaction time, temperature, and concentration could
all effect particle properties. This study showed great possibilities
as a simple and effective approach, compared to other sol-gel
methods, especially relating to photonics and biolabeling
applications. A number of other studies have also demonstrated the
versatility of the W/O microemulsion method to achieve silica
coatings on magnetic ferrite nanoparticles. One study revealed the
silica-coated magnetite (Fe;O,) and cobalt-ferrite (CoxFe;-xOy)
nanoparticles in a W/O microemulsion reaction method. The core
particles were approximately 8—14 nm; the silica shells were
approximately 14 nm thick. Cobalt ions added into the solution
greatly improved the magnetic coercivity of particles; showing that
the composition and structure for both can be tuned using this
approach [30, 31].

In another related investigation, Fe;O, and silica-coated Fe;O4
nanoparticles were synthesized using a W/O microemulsion
system containing Tween-80 and SDS as surfactants. The silica
coating led to reduced particle agglomeration and resulted in
slightly larger, more uniformly distributed nanoparticles (~16 nm)
compared to their uncoated counterparts. Structural analysis
confirmed their spinel phase, and further testing showed that both
coated and uncoated nanoparticles exhibited antibacterial activity,
with the coated ones showing significantly improved effects [32].

3.1.3. Stober method

The Stober method, first introduced in the 1960s, is a well-
established chemical technique for synthesizing SiNPs via
controlled hydrolysis and condensation of alkoxide precursors,
such as tetramethoxysilane (TMOS) or tetraethoxysilane (TEOS).
Typically performed in alcoholic media at room temperature, this
process involves a nucleophilic attack by hydroxide ions on the
alkoxysilane molecules, producing silanol intermediates that
subsequently condense to form siloxane bonds. The overall result
is the formation of colloidal silica particles. The method’s
simplicity and reproducibility have made it one of the most
frequently used protocols in nanoparticle synthesis [33, 34].

The original work by Stober et al. (1968) demonstrated that
particle size could be fine-tuned (from tens to hundreds of
nanometers) by adjusting parameters such as ammonia
concentration, alcohol type, and precursor ratios. This tunability
has contributed to the method’s popularity in both academic and



F. Sharifjafari et al./ Journal of Composites and Compounds 6(2024) 1-11

industrial applications, as evidenced by its extensive citation
record [34].

A more recent advancement by Ren et al. [35] combined
microchannel technology with microwave-assisted synthesis based
on the Stober approach. Their results showed accelerated
nucleation and growth, producing silica nanoparticles with
controlled sizes between 15 to 400 nm. The microwave-assisted
approach yielded larger, more uniform particles and higher output
than microchannel-only methods.

Another modification of the Stéber method enabled the
synthesis of rough-surfaced spherical SiO, nanoparticles using a
ternary mixture of TEOS, ethanol, and water. After a cooling
treatment, particles around 177 nm in size with high surface area
(~85 m?/g) were obtained. Key factors influencing particle
morphology included pre-reaction time, temperature, and
ammonia concentration. These particles were later functionalized
with gold for use in catalytic applications [36].

In the work by Pradhan et al., [37] the Stober process was
coupled with spin coating to deposit silica nanoparticles onto p-
type silicon substrates. The resulting layers exhibited quasi-
superhydrophobic surfaces with a contact angle of approximately
130°, suggesting their potential in self-cleaning surface
technologies.

A comparative study between commercial fumed silica and
Stober-derived silica nanoparticles highlighted differences in
surface hydroxyl group content. The Stober particles, possessing
higher —OH group density, showed better surface reactivity and
more significant {-potential shifts (from —35.5 mV to +26.2 mV)
upon functionalization ~with 3-aminxopropyltriethoxysilane
(APTES). This suggests their enhanced suitability for surface
modifications in chemical and energy-related applications [38].

In study by Larsen et al., [39] a modified Stéber method was
employed to coat iron oxide nanoparticles (IONPs) using a
combination of TEOS and APTES. Tuning the TEOS/APTES ratio
allowed control over particle size (60—100 nm), morphology, and
amine surface functionalization. Higher concentrations of APTES
led to aggregation, while optimized ratios resulted in well-
dispersed amine-functionalized silica-coated IONPs, exhibiting
improved magnetic response and surface properties desirable for
biomedical applications.

3.2. Physical methods

3.2.1. Laser ablation

Laser ablation is a technique that uses laser energy, short for
"light amplification by stimulated emission of radiation,” to
remove material from solid targets. In this method, intense energy
is focused on a specific point of the surface, causing light-
absorbing materials to evaporate. The term "ablation" denotes the
elimination of surface atoms and involves both single-photon
chemical bond disruption and multiphoton-induced thermal
evaporation [40]. This method has gained popularity among
physical approaches for producing non-toxic nanomaterials, as it
avoids foreign compounds and allows control over the three-
dimensional size of particles. Its versatility and simplicity make it
suitable for synthesizing a broad range of nanomaterials with
diverse applications [41].

Although laser ablation enables the production of high-purity
nanoparticles, since purity depends primarily on the target material
and surrounding medium, it traditionally suffers from limited
control over particle size distribution, agglomeration, and
crystallinity. This is mainly due to the random Brownian motion
involved in particle formation [40]. To address this, advanced
variations of laser ablation techniques have been developed to

better control particle morphology. A significant advancement
came in 2010, when researchers developed a laser ablation method
for synthesizing silica-metal nanoparticles by irradiating a metal
target submerged in an aqueous metal salt solution. This single-
step process enabled the fast fabrication of silica-stabilized
nanoparticles such as silver, gold, and their alloys. During ablation,
silica is simultaneously generated, acting as a stabilizing agent and
reducing the toxicity of the metallic components. This hybrid
approach effectively combines physical and chemical synthesis
routes, providing both stability and biocompatibility [42]. In a
separate  approach, core—shell silica nanoparticles were
synthesized through a two-step laser-assisted ablation technique.
Initially, a silicon wafer was ablated in water, and subsequently,
silver nitrate was added to the solution. The resulting redox
reaction produced silver nanoparticles encapsulated by porous
silica shells. Key synthesis parameters such as laser pulse energy,
wavelength, ablation duration, and the concentration of silver ions,
were shown to significantly affect the size and optical properties
of the final particles. These nanoparticles were thoroughly
analyzed using UV-VIS-NIR spectroscopy, XRD, and high-
resolution TEM, confirming their structural and optical
characteristics [43].

3.2.2. Ultrasonication

Ultrasonication has proven to be a powerful physical tool in the
synthesis of silica nanoparticles, especially in sol-gel and
microemulsion-based processes. The introduction of ultrasound
energy not only accelerates the chemical reactions but also has a
pronounced impact on particle size, morphology, and dispersion
stability [44, 45].

For instance, Nam et al. conducted a study using both the
Stober and reverse microemulsion methods under ultrasonic
conditions at 40 kHz. The resulting nanoparticles demonstrated
uniformity in structure and a low relative standard deviation, along
with a stable zeta potential of approximately —30 mV. Notably,
there was a linear correlation between particle concentration and
light scattering intensity, suggesting excellent colloidal stability.
These characteristics point toward high potential for application in
agriculture and other fields. Interestingly, in a separate approach,
ultrasonication was introduced not during synthesis, but during the
aging phase of the precursor solution. This gentle pre-synthesis
treatment (~1 mW) was found to extend the induction period,
increase the size of the silica spheres, and significantly enhance
monodispersity. Together, these findings highlight that both pre-
synthesis and in-process ultrasound applications can distinctly
influence nucleation and growth behavior [44, 46].

In other investigations, researchers focused on modifying the
traditional Stober method using high-power ultrasound probes to
significantly enhance synthesis efficiency. By optimizing several
parameters like the concentrations of TEOS, ammonia, water,
reaction temperature, ultrasound intensity, and insonation time,
they successfully reduced the reaction time from 270 to only 10
minutes, while simultaneously achieving smaller nanoparticle
sizes. Characterization through DLS and TEM revealed particles
ranging from 6 to 153 nm in diameter, accompanied by stable zeta
potentials, confirming the method’s consistency and precise
control. Similarly, another study employed a Taguchi experimental
design to optimize ultrasound-assisted sol-gel synthesis. The
analysis emphasized that ammonia concentration was the most
critical factor affecting particle size. Under optimized sonication
settings, uniform silica nanoparticles with an average diameter of
13 nm were obtained. The structural integrity and morphology of
the particles were confirmed through XRD, FTIR, light scattering,
and SEM, validating the effectiveness of the approach [47, 48].



6 F. Sharifjafari et al./ Journal of Composites and Compounds 6(2024) 1-11

3.2.3. Evaporation-condensation (vapor phase synthesis)

In vapor-phase nanoparticle synthesis, the system is
intentionally brought to a thermodynamically unstable state to
facilitate vapor-to-solid phase transition. This state typically
involves supersaturated vapor in which the reactants are condensed
through chemical reactions. First, homogeneous nucleation occurs,
and then particle growth continues by vapor condensation on the
initial particles. To produce smaller nanoparticles, rapid and
intense nucleation must occur, and then particle growth must be
stopped quickly to prevent excessive growth. These processes are
very rapid and uncontrolled, and are more suitable for continuous
or semi-continuous production, unlike colloidal synthesis, which
is time-consuming and batch-wise [49, 50].

Gas-phase or aerosol technologies have enabled the synthesis
of industrial nanomaterials such as carbon black and fumed silica
for over a century. These methods, which have evolved from early
experiments, now include multiscale process design and advanced
diagnostic tools, providing precise control over particle size,
shape, and composition, controls that are typically difficult to
achieve with wet chemical methods.

In high-temperature syntheses, processes such as coagulation
and sintering determine the final shape and properties of the
particles, creating fractal structures with predictable sizes. The
physical principles of this technology allow for simple modeling.
Modern technologies such as flame spray pyrolysis have wide
applications in catalysis, sensors, and biomedical engineering,
contributing to the rapid growth of these fields [51].

Gas-phase or aerosol technologies have been used for over a
century to synthesize industrial nanomaterials like carbon black
and fumed silica. These methods have advanced to include
multiscale process design and sophisticated diagnostics that allow
precise control over particle size, shape, and composition. In high-
temperature processes, coagulation and sintering shape particles
into fractal structures with predictable sizes, guided by easily
modeled physical principles. Modern techniques like flame spray
pyrolysis have broad applications in catalysis, sensors, and
biomedical engineering, driving rapid progress in these fields.

3.2.4. Ball milling

Mechanical milling, particularly the high-energy ball milling
technique, has emerged as an effective physical method for
synthesizing and dispersing silica nanoparticles. This approach is
capable of producing fine, amorphous silica particles and enables
their efficient integration into composite systems. The process
relies on mechanical forces generated by moving balls to crush raw
materials into much smaller particles. Although this method can be
scaled relatively easily for industrial use, its time-consuming
nature often limits its practicality in laboratory-scale studies
focusing on silica nanoparticle fabrication [52].

In a study conducted by Salavati-Niasari [53], high-energy
planetary ball milling was used to synthesize amorphous silica
nanoparticles from rice husk ash at room temperature. After 6
hours of milling, uniformly spherical particles with an average
diameter of around 70 nanometers were obtained. The research
also revealed that increasing the milling time or rotational speed
could further reduce the particle size. Moreover, when these
nanoparticles were evaluated as drug carriers for Penicillin-G in
simulated body fluid, they demonstrated a sustained-release
behavior, underlining their potential application in controlled drug
delivery systems.

In a separate investigation by Hedayati [54], surface-modified
silica nanoparticles were embedded into a poly(ether ether ketone)
(PEEK) matrix using the same high-energy ball milling method.

Before milling, the silica particles were functionalized with 3-
glycidoxypropyltrimethoxysilane, and the mixture was milled for
15 hours under an argon atmosphere. Transmission electron
microscopy (TEM) confirmed a homogeneous dispersion of silica
within the polymer matrix. Additionally, differential scanning
calorimetry (DSC) analysis showed that the milling process and
the presence of silica nanoparticles both contributed to a reduction
in the crystallinity and melting point of the PEEK matrix, showing
the influence of nanosilica on the thermal properties of polymer-
based materials [54].

3.3. Biological methods

3.3.1. Plant extract mediated synthesis

Due to the silica and silicon-based nanomaterials
multifunctionality, there is a growing demand for synthesis
methods that are not only cost-effective, safe, and scalable, but also
environmentally friendly. To address this, researchers are
increasingly focusing on green synthesis approaches that make use
of sustainable agricultural bio-resources, including rice husk ash,
coffee husks, sugarcane residues, wheat husk, and corn cob ash
[55].

3.3.2. Microbial synthesis

To establish a milder and more environmentally friendly
method for producing amorphous silica from rice straw, an
enzymatic hydrolysis strategy was applied. In this approach, rice
straw was initially hydrolyzed using either a specific fungal strain
(Trichoderma reesei TISTR 3080) or a mixed microbial
community (referred to as LDD1). Following enzymatic treatment,
the material underwent thermal processing at 500 °C for 8 hours.
The decomposition rates of rice straw by T. reesei and LDDI1
reached 59.6% and 45.2% of the original mass, respectively.
Thermogravimetric analysis revealed ash contents of 12% and
23% for the two treatments. Structural characterization through X-
ray diffraction and transmission electron microscopy confirmed
the presence of amorphous silica as the dominant component in the
ash, with particle sizes ranging between 50 and 80 nanometers. The
silica purity was found to be 82.5% in the T. reesei-treated sample
and 73.6% in the LDDI-treated sample. However, both types of
ash also exhibited relatively high levels of impurities such as
manganese and phosphate, likely originating from microbial
activity during the hydrolysis stage [56].

3.3.3. Diatom extraction

Diatoms are unicellular photosynthetic algae that inhabit
virtually all aquatic environments and play a fundamental role in
sustaining life on Earth. Their cell walls, known as frustules, are
remarkable natural examples of intricate three-dimensional (3D)
architectures, constructed primarily from nanopatterned silica.
These structures not only provide mechanical strength but also
possess a variety of physicochemical properties valuable for
technological applications [57].

Among natural sources, diatoms represent the most abundant
and efficient biological producers of porous silica. Their frustules
exhibit high surface area, thermal resistance, excellent
biocompatibility, and the potential for customizable surface
modifications. These attributes, combined with the ease of
cultivating diatoms under artificial conditions and the widespread
availability of fossilized diatom frustules (diatomite), position
diatoms as a sustainable and low-cost alternative to synthetic
materials, particularly in the development of advanced drug
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delivery systems [58]. Diatoms convert dissolved silicon into silica
through biosilicification. At neutral pH, silicon mainly exists as
orthosilicic acid; once solubility limits are reached, it forms
biosilica via an intracellular pathway. Orthosilicic acid is
transported into biosilica deposition vesicles, where biomolecules
such as long-chain polyamines, silaffin proteins, and silacidin
drive its transformation into hydrated amorphous silica. In this
process, long-chain polyamines influence nanoparticle size,
silaffins boost silica synthesis, and silacidins promote self-
assembly by interacting with positively charged species [59].

Recent research has emphasized the potential of diatom
biosilica as a promising alternative to synthetic porous silicon in
the creation of next-generation, nature-inspired nanocarriers for
biomedical applications. These naturally derived materials offer an
eco-friendly and economically viable platform for developing
controlled drug delivery systems.

For instance, Diatomite, a natural sedimentary material of
fossilized diatom shells, was purified by thermal and acidic
treatments to yield biocompatible medical-grade silica. It was then
mechanically processed into 100-300 nm nanoparticles via
crushing, sonication, and filtration, functionalized with 3-
aminopropyltriethoxysilane, and labeled with
tetramethylrhodamine isothiocyanate for bioimaging. Confocal
microscopy confirmed efficient cellular uptake and uniform
distribution within cancer cells, indicating strong potential as
nanocarriers for drug delivery [60].

Diatomaceous earth-based mesoporous silica nanoparticles
(dMSNs) were engineered for multimodal cancer therapy. They
co-loaded lanthanide ions for ROS generation under near-IR light
(PDT) and dual MRI/fluorescence imaging, and fucoidan (from
Sargassum oligocystum) as a chemotherapeutic agent. The
combined treatment reduced cancer cell viability to 47.7%,
versus 57.4% with fucoidan alone, highlighting the enhanced
efficacy of diatom-based multimodal nanoplatforms [61].

4. Biomedical applications of silica nanoparticles

Although silicon was initially regarded as a highly toxic
substance, this assumption was later reconsidered following the
discovery of several of its naturally benign characteristics. Today,
silicon is recognized as an essential trace element in the human
body, ranking just after iron and zinc in abundance. Consequently,
various silica-based materials, such as bioglasses, star gels,
mesoporous silica, and solid silica nanoparticles, have attracted
attention due to their high effectiveness in a wide range of
applications, such as biomedicine, controlled and targeted drug
delivery, tissue regeneration, and diagnostic imaging. However, to
ensure their performance and safety, precise control over the
physicochemical properties of these engineered silica materials is
crucial [62, 63].

The special physicochemical properties such as
biocompatibility, large surface area, and tunable porosity of
nanosilicates have also been investigated in medical applications,
especially in cancer treatment, making nanosilicates promising
candidates for the development of therapeutic and diagnostic tools
in modern medicine. Moreover, due to the surface properties of
silica particles, it facilitates surface modification and enables the
attachment of various biomolecules such as nucleic acids and
proteins [64].

4.1. Cancer theranostics and targeted drug delivery

Nanotechnology's ability to alter drug pharmacokinetics has
led to its use in various biomedical applications, especially targeted
drug delivery. Targeted drug delivery increases the concentration

of the drug in target tissues and reduces the side effects of the drug,
increasing the effectiveness of the treatment [65]. This method can
help the drug molecule reach the target tissue more specifically,
reducing the dosage and side effects. Of course, targeted drug
delivery is different from targeted therapy, which is the interaction
of the drug with a specific receptor [66, 67].

Mesoporous silica nanoparticles have been shown to be very
effective in cancer treatment due to their excellent structural
properties like high porosity, large surface area, tunable size and
specific mineral compositions [68, 69]. These nanoparticles can
deliver chemotherapeutic drugs to the tumor in a highly targeted
manner, which both increases the efficacy of the treatment and
reduces side effects. By using targeting ligands and the sensitivity
of the materials to stimuli, the precision of MSNs in delivering
anticancer drugs has been improved. The researchers investigated
that the biocompatibility of MSNs can be improved by modifying
the surface of the nanoparticles, and generally show less toxicity
than colloidal silica, which may cause cytotoxicity under oxidative
stress [69-72].

MSNs encapsulate chemotherapeutics like doxorubicin and
paclitaxel and can be actively targeted to breast and liver cancers
using ligands such as EpCAM aptamer, folic acid, GPC-3 peptide,
and HER2/neu antibodies, enhancing uptake, efficacy, and
reducing side effects. These features also boost diagnostic imaging
contrast, notably in ultrasound. Preclinical breast cancer studies
show improved pharmacodynamic and pharmacokinetic profiles
when drugs are delivered by MSNs. The mesoporous structure also
supports non-invasive imaging and the integration of diagnostic
and therapeutic functions, making MSNs valuable for
simultaneous cancer diagnosis and treatment [62, 73, 74].

4.2. Medical imaging

Nanomaterials have attracted attention in various fields,
especially in imaging as molecular probes and contrast enhancers,
due to their improved properties compared to traditional materials
[72]. SiNPs with tunable size, biocompatibility, and easy surface
modification are widely used for tissue and cancer cell imaging,
via surface modification or doping, in vivo and in vitro. For
example, FSiNPs fuse silica nanoparticles with fluorescent dyes
(FSiNPs), enabling bright, photostable cancer cell imaging. They
are synthesized by sol-gel and water-in-oil microemulsion
methods, trapping fluorescent molecules in the silica matrix and
shielding them. To improve dispersion and biomolecule binding in
aqueous environments, FSiNP surfaces are bioconjugated with
cancer-targeting groups (e.g., aptamers, antibodies, folic acid).
These features make FSiNPs precise tools for tumor imaging [75].

In recent developments, MSNs have made significant progress
as multimodal imaging agents in ultrasound, fluorescence,
photoacoustic, MRI, and CT, increasing the accuracy of
preoperative tumor detection and visualization for hepatocellular
carcinoma (HCC) [70, 76].

In a study, a nanocomposite consisting of mesoporous silica
nanoparticles decorated with superparamagnetic magnetite
nanocrystals was synthesized for magnetic resonance imaging
(MR) with contrast capability. The dye molecule in the silica
structure enhances the optical imaging quality, and the aggregation
of magnetite nanocrystals on the silica surface resulted in an
increase in the MR signal, which is due to magnetic synergy. The
anticancer drug doxorubicin (DOX) was able to penetrate the pores
of the nanoparticles and cause cell death. The successful delivery
of DOX and the maintenance of its anticancer properties were the
result of passive targeting and concentration at the tumor site and
the apoptosis process in the tumor tissue of mice, which were also
confirmed by MR and fluorescence imaging [77].
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4.3. Antibacterial and antiviral applications

Si0, nanoparticles are known as one of the effective agents
against viral and bacterial infections due to their specific
physicochemical properties. Their high surface-to-volume ratio
allows for better adsorption onto microbial membranes and
disruption of their integrity. Also, when exposed to light or heat,
these nanoparticles generate reactive oxygen species (ROS) and
cause oxidative damage to microorganisms. However, SiO, as
antimicrobial agents should consider possible toxic effects on
human cells and the environment [78].

Silica nanoparticles were coated with a silver/ polyrhodanine
composite in which metallic silver nanoparticles with a diameter
of about 7 nm were regenerated on the silica surface. This
composite, with structural confirmation through microscopic and
spectroscopic methods, showed strong antibacterial activity and
long persistence against Staphylococcus aureus and Escherichia
coli bacteria due to the combined antimicrobial effects of silver
nanoparticles and polyrhodanine [79]. Nanoparticles bind to viral
surfaces, disrupting virus—host cell interactions and inhibiting
entry by agglutinating surface proteins. Porous silica nanoparticles
aggregated upon exposure to the HINI influenza virus, and this
aggregation was demonstrated by TEM analyses, as reported by
Sminkina and colleagues, with validation in vitro [80].

Labau and colleagues [81] developed lipid-coated mesoporous
silica nanoparticles (LC-MSNs) loaded with the antiviral drug
ML336. The liposomal coating increased the circulation time, drug

Table 1
The summary of studies on Silica nanoparticles and silica composites.

persistence, and biocompatibility. LC-MSNs loaded with ML336
dose-dependently inhibited Venezuelan equine encephalitis virus
(VEEV) in vitro and sustained drug release after endocytosis,
enhanced therapeutic efficacy. In vivo mouse safety studies
showed that therapeutic doses (0.11 g/ kg) were nontoxic and that
the nanoparticles significantly reduced viral load in the brains of
VEEV-infected mice [81]. Table 1 shows the summary of studies
on Silica nanoparticles and silica composites.

5. Conclusion

This study investigated biomedical applications and properties
of silica nanoparticle compounds and synthesis techniques for
silica nanoparticles. Silica nanoparticles have gained significant
attention in the biomedical field such as drug and gene delivery,
regenerative medicine, tissue engineering, cancer diagnostics and
treatment due to their unique properties such as adjustable particle
size, large surface area, excellent biocompatibility, and tunable
pore structures. These features make them highly suitable for a
variety of biomedical applications, particularly in drug delivery,
diagnostics, and therapeutic interventions. This comprehensive
progress positions silica nanoparticles as key nanotechnology tools
in future biomedical innovations. This review also discusses the
future prospects of SiNPs in clinical trials and their potential in
precision medicine and advanced therapeutic strategies, with the
goal of safer, more efficient nanomedicines.

Silica nanoparticles and

composites Synthesis method Key findings Application Ref.
Thermally hydrocarbonized Thermal carbonization Excellent in vivo stability,low cytotoxicity, Oral drug delivery [21]
porous silicon NPs nonimmunogenic, rapid liver and spleen uptake
Mesoporous silica Sol-gel + surface High cellular uptake, sustained release, high Chemophotodynamic therapy [82]
nanoparticles (MSNs) modification cytotoxicity on SCC7 cells
MSNs-HA (Hyaluronic Acid- Amidation Excellent dispersity, enhanced cytotoxicity on Targeted cancer therapy [83]
conjugated) HeLa cells (CD44+)
CurNQ-loaded mesoporous Sol-gel loading pH-responsive fluorescence and cytotoxicity; Ovarian cancer theranostics [84]
silica nanoparticles targeted release in acidic tumor environment
Dye-loaded MSNs with Sol-gel + ultrasound Ultrasound-enhanced extravasation of MSNs; Enhanced tumor penetration [85]
cavitation nuclei improved tumor tissue penetration
Curcumin-loaded MSNs in Sol-gel + electrospinning  Sustained release; preserved stemness and Stem cell therapy / Cancer [86]
PCL/Gel nanofibers proliferation of hADSCs over 28 days
Lectin-conjugated MSNs for Sol-gel + lectin pH-responsive DOX release; ~100x higher Targeted bone cancer therapy [87]
bone cancer functionalization cytotoxicity in SaOS-2 (osteosarcoma) cells vs

normal cells
Dendronized MSNs Sol-gel + PAMAM Endosomal escape via PAMAM buffering; low Cytosolic drug delivery / [88]

dendron grafting cytotoxicity; efficient intracellular release Gene therapy

Redox-responsive MSNs Sol-gel + disulfide Dual delivery overcame drug resistance; MDR cancer chemotherapy [89]
loaded with siRNA/DOX gating triggered siRNA/DOX release; suppressed

MDRI1 expression
Aminopropyl-modified MSNs Co-condensation Surface morphology and pore structure tuned via Active targeting (folate [90]
(MCM-41 type) (TEOS/APTES) APTES content; enhanced uptake in LNCaP receptor)

cancer cells
Dye-loaded MSNs + polymeric ~ Sol-gel + ultrasound- Ultrasound-enhanced nanoparticle extravasation; Tumor-targeted drug delivery [91]
cavitation nuclei activated cavitation improved release in tumor models
Fes04@SiO: core-shell MSNs Sol-gel + core-shell + Low protein fouling, co-delivery of siRNA + Ovarian cancer theranostics [92]
with zwitterionic coating MPC silanization daunorubicin; significant ovarian cancer cell

silencing/killing
Gold-core@mesoporous silica Seed-mediated AuNR + Combined nitric oxide and levofloxacin release Antimicrobial & biofilm [93]
(AuNR@MSN) silica shell under NIR; ~90% biofilm reduction via PTT photothermal therapy
Eudragit-coated MSNs for oral Sol-gel + polymer pH-triggered colonic release of budesonide; Inflammatory bowel disease [94]

corticosteroid delivery

coating

improved colitis symptom reduction in mouse
model

(IBD) therapy
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