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ABSTRACT ARTICLE INFORMATION
Wearable sensors have emerged as transformative tools, enabling real-time monitoring Article History:
of human health and activities. Within this field, miniaturized and flexible devices Received 01 October 2024
have attracted significant attention due to their compact size, ease of use, and non- Received in revised form 21 December 2024
invasive operation. These sensors function by detecting biological activities and Accepted 25 December 2024
converting bio-signals such as electrophysiological, mechanical, and biochemical
information into quantifiable data. Such data can be obtained through various sensing Keywords: .
Nanocomposites

approaches, including the detection of electrolytes, ions, and gases. In many cases,
wearable sensors are fabricated by integrating the sensing element into a polymer
matrix, with nanomaterials playing a particularly important role in enhancing
performance. Health monitoring remains the primary application area for these
devices. Emerging technologies, including Al-assisted sensing and cloud-based data
processing, are expected to drive future advancements, while also introducing
challenges related to data privacy. Looking ahead, key areas of development for
nanomaterial-based wearable sensors include non-contact monitoring, textile-
integrated devices, and improvements in security and regulatory frameworks.
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1. Introduction

Recent advances in wearable technologies have focused on the
development of miniaturized and compact sensors capable of
tracking various physiological and biochemical parameters [1-3].
These wearable devices serve dual purposes, including diagnostics
and continuous monitoring across multiple domains. Their current
capabilities include detecting physiological signals, biochemical
markers, and motion-related data [4]. These sensors are central to
health monitoring, environmental tracking, and fitness
management [5].

A wearable sensor should be small, light, and as unobtrusive as
possible [6]. Moreover, they must exhibit high stretchability,
exceptional sensitivity, and long-term durability without any
degradation in performance to operate with consistent reliability in
practical use, particularly as wearable strain sensors [7]. The
ongoing miniaturization of these devices not only boosts user
comfort but also facilitates seamless integration into daily life.
Despite the progress, most existing diagnostic tools remain non-
wearable and reliant on invasive methods like blood draws and
conventional bench-top assays. This situation conveys a critical
challenge in the field, which is the need for wearable sensors to
develop beyond basic health monitoring and to reliably and
continuously detect clinically relevant physiological events in real
time [1].

Emerging use cases include non-invasively confirming fetal
health through motion detection in the womb, distinguishing
epileptic seizures from vigorous activity, warning of dehydration
in athletes or workers, tracking individual glucose responses to
food, and even monitoring and controlling the spread of infectious
diseases before symptoms arise. Addressing these challenges
requires sensors that are not only miniaturized and durable but also
capable of collecting multimodal or multiplexed data continuously
and in real time [1].

Next-generation wearable sensors designed for simultaneous
physical and biochemical analysis have the potential to develop
diagnostics. They could enable high-resolution, time-stamped
health data collection, empowering individuals and clinicians alike
with real-time insights into personal health [8].

A notable innovation driving this miniaturization and
performance enhancement in biosensors is the incorporation of
nanocomposites, advanced materials possessing exceptional
mechanical, electrical, and chemical properties [9]. These
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nanocomposites markedly enhance sensor sensitivity, flexibility,
and durability, making them highly suitable for next-generation
wearable platforms [10, 11].

As such, this review explores recent advancements in miniaturized
and wearable biosensors incorporating nanocomposite materials,
with a focus on their wide-ranging applications and future
directions.

2. Fundamentals of biosensors

2.1. Definition and types of biosensors

A sensor is an analytical device that detects physical quantities
and converts them into readable and measurable signals. It is often
used to identify analytes such as metal ions, electrolytes, or
bioactive compounds. A biosensor, on the other hand, is a
specialized type of sensor that incorporates a biological element
such as an enzyme, antibody, or nucleic acid combined with a
physicochemical detector to specifically analyze biological
molecules or processes [12].

Biosensors are classified based on the designated sensing
mechanism, including pressure, strain, electrochemical,
optoelectronic, and temperature-based sensors, among others [13].
Additionally, depending on their application, they fall into three
categories: (a) in vitro diagnostic biosensors, which analyze
samples such as blood, saliva, or urine [14]; (b) continuous
monitoring biosensors (CMBs), which provide real-time data

collection over extended periods [15, 16]; and (c) wearable

biosensors, designed for non-invasive, on-the-go health
monitoring [17, 18].
Recent  advancements have  introduced innovative

technologies, including clustered regularly interspaced short
palindromic repeats (CRISPR) and CRISPR associated proteins
(Cas) biosensing platforms, improved lateral flow assays, and
miniaturized formats such as microfluidic and paper-based
analytical devices [15].

2.2. Key components of biosensors

Key components of a biosensor are the biorecognition element,
the transducer, and the signal processing unit as can be seen from
Fig. 1 [19].
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Fig. 1. Schematic representation of the main components of a biosensor, including analyte, biorecognition element, and transducer.
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The biorecognition element functions to selectively identify the
target analyte and can include enzymes, antibodies, nucleic acids,
aptamers, or living cells [19, 20]. The transducer is able to convert
the biological interaction into a quantifiable signal, depending on
the system design [21, 22]. Moreover, the signal processing unit
amplifies, filters, and translates this signal into a readable output.
Together, these components enable sensitive, specific, and real-
time detection [23, 24].

2.3. Working principles of biosensors

The operation of a biosensor involves a sequence of connected
processes that convert a biological interaction into a measurable
signal. At the outset, the biorecognition component is affixed to
the sensor’s surface using physical or chemical methods to ensure
selective interaction with the target analyte. Upon exposure, the
analyte binds to the biorecognition element, leading to a specific
biochemical reaction such as antigen-antibody binding or enzyme-
substrate conversion, which generates changes in electrons, ions
(e.g., H), gases (e.g., O,), or heat [25-27]. These biochemical
events are then transformed by the transducer into a measurable
physical signal, often involving changes in electrical signals [28]
(such as current, voltage, potential, impedance), optical
absorption, piezoelectric, thermal or mechanical properties [29,
30]. The resulting raw signal is typically weak and requires
amplification and filtering to eliminate noise, after which it is
processed and displayed as a user-friendly output in numeric,
graphical, or digital form [31, 32]. For example, in an
electrochemical biosensor, enzymatic activity may result in the
generation or consumption of electrons, leading to changes in
current that are detected using electrodes (working, reference, and
counter), and the resulting current intensity is directly proportional
to the concentration of the analyte [33-35].

3. Nanocomposites in sensor development

Over the past years, the adoption of a wide range of advanced
functional materials into wearable sensors has emerged, which
significantly enhances the performance and versatility of sensors
[6]. Among these, nanocomposites have emerged as a promising
platform for sensing technologies, particularly in the healthcare
sector [7].

3.1. Overview of nanocomposites

Nanocomposites are engineered materials composed of two or
more components, with at least one dimension in the nanoscale
range (typically <100 nm) [36, 37]. Their high surface-area-to-
volume ratio increases the interaction between the sensor and the
analyte, leading to greater sensitivity. For instance, in a study by
Ruecha et al, graphene-based polyaniline (G/PANI)
nanocomposites used as electrode modifiers in electrochemical
sensors demonstrated that their high surface-area-to-volume ratio
provides increased interaction sites with heavy metal ions such as
Zn(Il), Cd(Il), and Pb(Il). This enhanced interaction led to
improved sensitivity and lower detection limits, enabling effective
trace metal analysis in complex biological samples like human
serum [38]. Furthermore, nanocomposites made with conductive
materials can transmit signals more rapidly and efficiently [39].
For instance, Jiang et al. [40] developed Ag
nanoparticles/Nitrogen-doped graphene (NG) nanocomposites that
exhibit enhanced electrical conductivity and a larger surface area,
which facilitates more effective electron transfer. This increased
electron transfer efficiency enabled the creation of a highly
sensitive biosensing platform for acetamiprid detection, achieving

a remarkably low detection limit of 3.3 x 10™'* M. This example
emphasizes how conductive nanocomposites can improve signal
transmission in sensing applications. Moreover, the tunable
mechanical  flexibility and biocompatibility —of these
nanocomposites make them ideal for integration into wearable
devices [41, 42]. For example, Han et al. [43] developed a
nanocomposite film made from cellulose nanofibers and graphene
nanoplatelets that exhibited high electrical conductivity,
mechanical robustness, and excellent flexibility. This
nanocomposite functioned effectively as a wearable strain sensor,
demonstrating rapid response and durability over thousands of
cycles, making it ideal for integration into flexible and wearable
health-monitoring devices. Overall, their tunable physical and
chemical properties make nanocomposites particularly suitable for
next-generation biosensors, improving sensitivity, selectivity, and
response time in both clinical and environmental applications [44,
45].

3.2. Types and composition of nanocomposites

Nanocomposites can be categorized based on their composition
into metal-based, carbon-based, and polymer-based types [46, 47].
Metal-based nanocomposites, such as those containing gold (Au)
or silver (Ag) nanoparticles, offer high electrical conductivity and
catalytic efficiency [48, 49]. Carbon-based nanocomposites,
including graphene, graphene oxide, and carbon nanotubes
(CNTs), exhibit excellent mechanical strength along with superior
electrical conductivity [50, 51]. Polymer-based nanocomposites
are fabricated by integrating inorganic nanomaterials into organic
polymer matrices, thereby improving flexibility, stretchability, and
sensitivity [52-54].

These materials are typically synthesized using methods such
as sol-gel processing, chemical vapor deposition (CVD),
electrospinning, or wet chemical techniques, depending on the
desired structure and functionality [55-57].

The type of polymer matrix and the incorporated nanofiller
material greatly influence the overall performance of
nanocomposite-based sensors [58]. The polymers utilized in such
systems may be classified as non-elastic, hydrogels, chemically
crosslinked elastomers, or physically crosslinked elastomers. Soft,
stretchable nanocomposites have addressed a critical challenge in
wearable electronics, namely, the mechanical mismatch between
rigid devices and soft biological tissues. Compared with
conventional rigid electronics, nanocomposite-based sensors
conform more naturally to the body, enabling long-term, high-
reliability biosignal recording with minimal discomfort [59, 60].
Conductive hydrogels, which combine flexible hydrophilic
networks with conductive fillers, offer excellent elasticity,
mechanical robustness, and multifunctional sensing capabilities,
making them highly suitable for wearable applications [59, 61].
For instance, Liu et al. [62] developed a transparent, tissue-like
ionogel-based wearable sensor reinforced with silver nanowires.
The resulting P(AAm-co-AA)/Ag NW composite achieved a
stretchability of up to 605% and a fracture stress of approximately
377 kPa. It exhibited sensitivity to both temperature fluctuations
and electrostatic fields. To reduce skin irritation and improve
conformability, the nanocomposite was encapsulated in a
transparent polyurethane dressing, enabling multidirectional
stretch and effective skin adherence. The sensor showed high
sensitivity, stability, and repeatability, making it ideal for long-
term strain sensing applications.

Nanofillers can be derived from carbon-based nanomaterials,
polymers, metallic nanoparticles (such as Ag and Au), liquid
metals, and a class of emerging two-dimensional (2D) materials
like MXenes [58, 59, 61]. Nanofillers are responsible for mediating
electrical conductivity, signal stability, and biocompatibility [59,
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61]. Among the most promising nanofillers are MXenes, a class of
two-dimensional transition metal carbides and nitrides known for
their unique physicochemical properties. These materials exhibit a
tunable bandgap, excellent photocurrent generation capability, and
high electrical conductivity. Their layered structure facilitates
efficient ion transport, while their hydrophilicity, biocompatibility,
and ease of functionalization further enhance their suitability for
sensor applications. Additionally, MXenes have minimal diffusion
barriers, making them highly attractive for use in bioanalytical
devices and wearable biosensors [13, 63]. Their ability to retain the
biological activity of immobilized molecules while providing
excellent electrical interfacing has made MXenes suitable for both
electrochemical and optical biosensors [64]. The layered
architecture facilitates signal transduction, while its conductivity
supports highly sensitive and real-time biomolecule detection [65].
For example, Huang et al. [66] fabricated a biosensor based on
surface functionalized MXene (Ti;C,T,) for sensitive enzymatic
glucose detection. They enhanced the surface of MXene by
generating defects and increasing hydroxyl groups to serve as
binding sites for bioreceptor immobilization. The functionalized
MXene's excellent electrical conductivity and abundant active sites
facilitated electron transfer during the redox reaction between
glucose oxidase and glucose. The sensor demonstrated a high
sensitivity of up to 5.1 A/A for 10 mM glucose and was integrated
into a cloud-based data collection system, ensuring detection errors
within 10%. Moreover, Chen et al. [67] developed a noninvasive,
wearable sensor for the sensitive and selective detection of uric
acid (UA) in human sweat. They functionalized Ti;C,Tx MXene
with 1,3,6,8-pyrene tetrasulfonic acid sodium salt (PyTS) via n—n
conjugation to create a bifunctional electrocatalyst. This
PyTS@TisC-:Tx composite provided multiple active sites,
enhancing the electrocatalytic oxidation of UA. The sensor
demonstrated high sensitivity within a range of 5 uM to 100 uM
and achieved a low detection limit of 0.48 puM, outperforming
traditional uricase-based sensors. Integrated with flexible
microfluidic sampling and wireless electronics, the sensor enabled
real-time monitoring of UA levels during exercise, facilitating
personalized health management and disease prevention.
Furthermore, Wang et al. [68] constructed a dual-mode aptasensor
combining electrochemical and colorimetric detection for rapid
on-site identification of Vibrio parahaemolyticus (V.P.) in
seafood. A PBA-Fc@Pt@MXenes was developed as a nanoprobe,
utilizing MXenes modified with phenylboronic acid and ferrocene,
which exhibited peroxidase-like activity and specific recognition.
The aptasensor, featuring a V.P.-specific aptamer and the
nanocomposite, achieved a detection limit as low as 5 CFU/mL via
electrochemical detection and 30 CFU/mL via colorimetric
methods. The synergistic catalytic and conductive effects of Pt and
MXenes significantly amplified signals, enabling high sensitivity
and mutual verification for accurate pathogen detection.

Chaudhari et al. [69] described a carbon-nanocomposite textile
sensor embedded in a compression sleeve, capable of
piezoresistive sensing to quantify elbow-range motion during
upper-limb VR rehabilitation. Their demonstrations, including a
Kinarm validation and a VR task, show a strong, proportional
relationship between joint angle and sensor resistance, with over
90% accuracy for at-home measurements using a Meta Quest 2 VR
system. Fig. 2 presents participant performing a commercial
stretching exercise available on Oculus Quest. A CNT sensor
integrated into the sleeve monitors the sleeve resistance variations
across three stretch types. Arrows in the figure show the peaks and
troughs in the resistance curve, along with the corresponding arm
positions during Stretch 2.

Multiple investigations have emphasized the practical utility of
nanocomposites in wearable sensor design. Table 1 shows a
summary of different nanocomposite-based wearable sensors.

3.3. Other advancements in wearable biosensors

Textile-based wearable Sensors have also
attracted growing interest, particularly for their potential in
healthcare applications. Smart textiles integrate sensors, actuators,
communication units, computing, and electronic systems, all of
which are either textile-based or compatible with textile
embedding. This integration enables the discreet and comfortable
monitoring of physiological signals. To embed sensing elements
into garments, both conventional fabric manufacturing methods,
such as weaving, and advanced techniques, including inkjet
printing, coating, lithography, and CVD, are employed. These
methods help achieve high performance in terms of signal quality
and sensitivity. Examples of such innovations include textile
electrodes, temperature sensors integrated into fabrics, and textile-
based activity monitors [79]. One of the most promising
applications of textile-based sensors is the development of dry,
flexible textile electrodes for monitoring biopotential signals such
as electrocardiography (ECG) and electromyography (EMG) [80].
Unlike conventional gel-based electrodes, which may cause skin
irritation and are disposable, textile electrodes offer enhanced
comfort, washability, and long-term usability for both clinical and
fitness-related monitoring [81]. Gel-based electrodes also tend to
dry out over prolonged use, leading to increased impedance and
signal degradation. In contrast, dry textile electrodes eliminate the
need for conductive gels and maintain stable signal quality,
making them highly suitable for continuous biopotential sensing in
wearable systems [82, 83]. These electrodes are often fabricated
using conductive yarns [84, 85] or coated with nanomaterials such
as PEDOT:PSS [86], graphene [87, 88], or MXenes [89] to achieve
high conductivity, low skin—electrode impedance, and signal
stability during movement. Fig. 3 illustrates a schematic
representation of a wearable biosensor system designed for
continuous monitoring of physiological and movement data.
Embedded sensors in such systems enable the recording of ECG
signals through various electrode configurations, as well as the
collection of EMG data [4]. Based on this concept, Mahmud et
al. [90] developed a novel wearable ring sensor capable of
continuously monitoring electrodermal activity, heart rate, skin
temperature, and locomotion. Their system was tested on
volunteers across diverse emotional states, demonstrating
accurate, real-time data collection. This approach highlights how
miniaturized, multi-modal biosensors can improve comfort,
reliability, and accuracy in wearable health monitoring, addressing
key challenges in emotional and physiological state measurement.
Additionally, Siddharth et al. [91] developed a wearable multi-
modal biosensing system capable of synchronously recording
EEG, photoplethysmogram (PPG), eye-gaze, and body motion
data outside laboratory settings. Their integrated platform
minimizes motion noise, supports real-time data transmission, and
can be extended to include other biosensors. This system
demonstrates how multi-modal, research-grade sensors can be
readily applied in practical applications, advancing wearable
biosensing for affective computing and health monitoring.
Advancements in additive manufacturing (AM), commonly known
as 3D printing, have opened new possibilities for enhancing
accessibility and affordability in diagnostic technologies [92, 93].
AM enables the low-cost fabrication of customized, flexible, and
wearable bioelectronic patches capable of monitoring multiple
electrolytes in an individual's sweat [93]. These 3D-printed devices
interact noninvasively enabling continuous, real-time tracking of
physiological metrics [94]. For instance, Yi et al. [95] introduced
an innovative microengineered pressure sensor fabricated by a
multi-material, multilayer all-3D-printed nanocomposite-based
(M2A3DNC) designed to record multiple physiological signals
with high sensitivity in real time.
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Table 1

Summary of different nanocomposite-based wearable sensors.
Nanocomposite material Fabrication method Application Ref.
CNT coated knit fabric (polyester, nylon, Coating of fabric with a thin Wearable piezoresistive sensor for real-time measurements in [69]
clastane fibers) CNT composite virtual reality-based upper-extremity rehabilitation
FD-BTO/PVDF 3D printing Self-powered sports monitoring, pressure pattern recognition [70]
S-CNF-Ag NPs/AA Photocrosslinked hydrogel Sweat metabolite detection (urea, uric acid), real-time pH [71]

monitoring

GO/PVA/PDA Hydrogel ECG signal acquisition through self-adhesive electrodes [72]
MWNT/PDMS Extrusion-based 3D printing Flexible strain sensor for mechanical motion [73]
MoO3/V2CTx Wet chemical synthesis Detection of acetone and alcohol-based sanitizers [74]
PVA-based ionogel with [Camim][I] Tonogel composite Temperature-tolerant, high-performance wearable sensor [75]
Ag@Cu/gelatin/ Na2SO4 — Bionic skin and flexible electronic sensors [76]
PVA/PANI/TEGO Hydrogel Motion and glucose monitoring [77]
Graphene/AuNPs/chitosan nanocomposite  Simple casting method Electrochemical biosensing of glucose in blood samples [78]

* Functionalized barium titanate (FD-BTO)/polyvinylidene fluoride (PVDF), sulfonated cellulose silver nanocomposites (S-CNF-Ag NPs)/ acrylic acid (AA), graphene oxide (GO),
polyvinyl alcohol (PVA) and polydopamine (PDA), electrocardiography (ECG), multi-walled carbon nanotube (MWNT)/polydimethylsiloxane (PDMS), 1-butyl-3-methylimidazolium
iodide ([Camim][I]), silver coated copper (Ag@Cu), gold nanoparticles (AuNPs), Carbon nanotube (CNT).
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Fig. 3. Schematic representation of a wearable biosensor system designed for continuous monitoring of physiological and movement data.

Using the intrinsic advantages of extrusion 3D printing, they
directly printed the conductive layers and micro-structured
dielectric layers by optimizing the nozzle's path, resulting in air
voids that enhanced the compressibility of the active layer. This
approach exhibits the production ofsensors with very low
detection limits, rapid response times, and mechanical properties
matching those of human skin, ensuring comfortable and sustained
contact. Based on the versatility of 3D printing, NajafiKhoshnoo
et al. [96] developed a fully integrated, miniaturized, and wireless
pH sensor system called WB2F3D, fabricated entirely through 3D
printing on skin-like flexible substrates. This innovative approach
enabled the multimaterial and multilayer printing of sensor
components, including electronic circuitry and antennas, in a low-

cost, time-efficient manner. The 3D-printed, battery-free
system demonstrated high sensitivity, specificity, and excellent
mechanical flexibility, ensuring continuous and real-time
monitoring of pH levels relevant to wound healing and disease
detection. Moreover, another notable example from Kim et al. [97]
illustrates the development of multiplex, low-cost, and
mechanically flexible all-inclusive integrated wearable (AIIW)
patches created ~ using  3D-printing  technology.  These
patches incorporate flexible sensors and microfluidic sample
handling  units, enabling simultaneous,  noninvasive,  and
continuous measurement of multiple electrolyte levels in sweat.
This approach demonstrates the potential for personalized health
monitoring and paves the way for scalable, reliable, and affordable
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platforms for large-scale health assessments. Furthermore, recent
innovations in sensor design have led to the development of highly
sensitive and selective wearable biosensors. The incorporation of
nanocomposites has served as a key driver of these developments,
boosting device sensitivity, accelerating response times, and
facilitating the simultaneous detection of multiple biomarkers [17,
94].

4. Applications of wearable biosensors

Miniaturized wearable biosensors have a broad and diverse
range of applications. Among these, health monitoring stands out
as one of the most prominent. These devices are increasingly
employed to track physical activity, physiological metrics, and
environmental conditions in real time [6].

In medical practices, such sensors provide continuous glucose
monitoring for diabetic patients, heart rate tracking via ECG,
assessment of respiratory rate, blood pressure, and oxygen
saturation, measurement of muscle activity, and controlled drug
delivery. The data obtained from these measurements provide
valuable insights into a person's health and hold significant
diagnostic potential [4].

Such capabilities support early disease diagnosis, for example,
congestive heart failure detection, help in the prevention of chronic
conditions like diabetes, and improve the clinical management of
neurodegenerative diseases such as Parkinson's. Moreover,
wearable sensors facilitate rapid response to emergencies like
seizures in epilepsy patients and cardiac events in individuals
under cardiovascular monitoring [98]. For example, Li et al. [99]
utilized portable biosensors to monitor physiological changes in
individuals during daily activities, recording over 250,000
measurements from 43 people. Their data revealed circadian
variations and responses to environmental factors like high-
altitude flights, highlighting the sensors' ability to detect early
signs of illnesses such as Lyme disease and differentiate between
insulin-sensitive and -resistant individuals. This demonstrates how
portable biosensors can support personalized health monitoring
and early disease detection outside clinical settings.

Moreover, textile-based dry electrodes have demonstrated high
performance in wearable healthcare systems for long-term
biopotential monitoring. These flexible sensors, embedded directly
into garments, allow continuous ECG and EMG tracking, which is
essential for early detection of cardiac anomalies in elderly patients
and real-time assessment of muscle activity during rehabilitation
or athletic performance [100]. Their seamless integration into
everyday clothing enables discreet, non-invasive monitoring,
thereby enhancing user compliance.

Moreover, recent advances in wireless communication and
low-power electronics facilitate the real-time transmission of high-
fidelity biosignals to mobile devices, supporting remote patient
management and Al-assisted clinical decision-making [101]. Such
systems play a vital role in reducing hospitalization and enabling
proactive, personalized care [102].

Beyond healthcare, wearable sensors are also used in
environmental monitoring to detect air pollutants and assess water
quality by identifying contaminants [103, 104]. In the fields of
sports and fitness, wearable sensors offer real-time feedback on
physical activity and biometrics [105], while in industrial
environments, they serve in safety monitoring and equipment
diagnostics [106]. A specific application is gait analysis using
motion sensors placed on parts of the body, such as the feet or
waist. These sensors, which include accelerometers, gyroscopes,
force sensors, strain gauges, inclinometers, and goniometers, can
assess multiple gait characteristics, providing a detailed picture of
movement dynamics [107].

5. Challenges and limitations

Despite major advances in miniaturized wearable biosensors,
several challenges persist. Technical difficulties in fabrication and
integration can lead to variability in device performance, and
limitations in sensitivity and selectivity can hinder the precise
detection of specific biomarkers [108]. Additionally, ensuring
biocompatibility remains a critical concern for safe and prolonged
use on the human body [109]. Data privacy and security also pose
serious issues, as these devices often collect sensitive personal
information [110].

Among different sensing approaches, non-invasive chemical
sensing modalities face particularly difficult barriers to
commercialization. ~ Furthermore, significant fundamental
improvements are still needed across mechanical, electrical, and
optical sensing platforms, particularly to enhance detection
specificity. These challenges are partially rooted in the biological
interface itself: human skin acts more as a protective barrier than
an information-rich medium, limiting signal access and accuracy
[1,111].

Another persistent limitation involves the bulkiness and
rigidity of many wearable sensors, which can lead to user
discomfort, motion artifacts, and inaccurate data. This has spurred
intensive global research into the development of next-generation,
ultra-lightweight, soft, and flexible materials suitable for wearable
devices [112]. Consequently, further efforts are needed to optimize
signal processing and transmission units that are lightweight,
compact, energy-efficient, and seamlessly integrated into the
overall sensor design [13].

Electromagnetic tracking systems (ETSs) also face limitations,
including restricted capture volumes and susceptibility to magnetic
interference from nearby metal objects. Once these drawbacks are
resolved, ETSs can potentially provide positional and orientation
data with accuracy comparable to that of image-based tracking
systems [107].

Regarding sensors incorporating nanocomposites, mass
production of 2D nanomaterials remains both technically
challenging and cost-prohibitive [13]. In addition, interactions
between these materials and biological fluids like sweat or saliva
can degrade sensor performance. Environmental instability of
some 2D materials further restricts their practical use unless
adequately addressed without compromising sensor sensitivity.

Despite continued progress, wearable sensors still face
limitations in data accuracy, disease-specific detection, and early
diagnostic capability [113]. Overcoming these limitations will
require breakthroughs in materials, system integration, and signal
interpretation technologies.

6. Future directions

Emerging trends in nanocomposite research hold great promise
for advancing sensor technologies. Interdisciplinary collaboration
among materials scientists, engineers, and biologists is expected to
yield novel solutions that further enhance sensor sensitivity,
durability, and biocompatibility [114]. At the same time,
regulatory frameworks must evolve to address ethical concerns
related to data privacy and the widespread deployment of wearable
biosensors [110].

Ongoing innovations in sensing materials, embedded
electronics, wireless communication, nanotechnologies, and
device miniaturization now make it feasible to build smart systems
capable of continuously monitoring human activity. These
wearable systems can detect abnormal or emergency conditions by
tracking physiological signals and other contextual parameters,
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enabling timely interventions [115]. Wearable and remote health
monitoring systems are also poised to reduce the healthcare access
gap between urban and rural populations by extending the reach of
medical expertise [4]. Although numerous existing sensors are
designed to monitor basic physical parameters such as pressure,
temperature, and movement, and analyzing complex biological
fluids (e.g., sweat, interstitial fluid, urine, or breath) requires
integrated and more sophisticated sensor platforms [6]. An ideal
wearable sensor should be compact and unobtrusive. Although
miniaturizing the sensing unit is often achievable, downsizing the
power source remains a major challenge. One promising strategy
involves harvesting and storing energy from the user or
environment using thermoelectric materials [6]. Future directions
also include developments in wearable energy systems,
multicomponent integration, and wireless communication
technologies [112]. These features are essential for fully
autonomous and connected health monitoring platforms. Wireless
and wearable sensors are expected to play a central role in
personalized healthcare, offering remote, non-contact, and
continuous monitoring without disrupting daily routines [116].
However, since these devices handle personal health data and
connect to networks, robust cybersecurity measures must be
developed to protect patient privacy and prevent unauthorized data
access [110].

Textile-based dry electrodes are also expected to undergo

substantial innovation as part of next-generation e-textile systems.
Future developments may focus on improving their washability,
durability, and long-term skin adhesion without compromising
comfort or signal fidelity. Integrating such electrodes with Al-
driven platforms can enable intelligent interpretation of
biopotential signals such as ECG and EMG, supporting early
diagnosis and continuous monitoring. Moreover, hybrid designs
that combine textile flexibility with nanomaterials and energy-
harvesting capabilities could lead to fully autonomous and self-
powered wearable systems for healthcare. These advancements
will help overcome current limitations and broaden their real-
world applicability beyond clinical settings [100, 117].
Although many studies have demonstrated the potential of
wireless monitoring technologies in the lab, scaling these
solutions for real-world, industrial, or large-scale deployment
remains a major hurdle [13]. Multifunctional sensors that
integrate both mechanical and electrochemical sensing elements
offer a promising path toward more comprehensive health
assessments [13]. Additionally, improving diagnostic accuracy
and early disease detection will likely require combining
advanced sensor architectures with artificial intelligence (AI). Al-
powered wearable sensors can help extract meaningful signals
and support clinical decision-making by delivering precise,
actionable insights [113].

further advancements, positioning wearable sensors as
indispensable tools in personal healthcare and paving the way for
deeper integration with emerging technologies.
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