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A B S T R A C T 
 

A R T I C L E    I N F O R M A T I O N 

This study offers a comprehensive analysis of metal additive manufacturing (AM), a 
production technique that uses digital 3D models to directly construct intricate metallic 
components layer by layer. It discusses the key procedures in metal AM, such as 
directed energy deposition (DED), binder jetting (BJ), and powder bed fusion (PBF), 
emphasizing how they can create parts with complex geometries that are impossible 
to achieve with conventional manufacturing techniques. In addition to addressing 
issues like anisotropy and joint flaws related to the process, the focus is on metal 
additive manufacturing's exceptional ability to produce components with complex 
geometries and specific microstructures that traditional manufacturing cannot provide. 
The paper also explores the significance of post-processing approaches for 
performance enhancement and how process parameters influence the mechanical and 
structural properties of the produced components. Applications in the industrial, 
automotive, and medical fields highlight the technology's versatility and growing 
market potential. By integrating digital design with functional metal components, this 
synthesis aids in the design, optimization, and selection of suitable metal AM methods 
for advanced metallic component manufacture. 
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1. Introduction 

The manufacturing technique known as AM, or 3D printing, 
allows for creating items by printing one layer at a time under the 
guidance of a digital 3D model [1-4]. Complex geometries that are 
nearly impossible to build using traditional technologies may now 
be manufactured because of this special feature. Because of this, 
AM is a tool resource that allows designers to produce complicated 
or bespoke models in a single step without being constrained by 
traditional manufacturing constraints such as significant material 
waste, the inability to build complex forms, or the requirement for 
specialized tooling [5]. AM provides various benefits over 
conventional production processes, such as increased structural 
efficiency, geometric flexibility, customization [6], and lower 
material use [2]. It is coupled with the opportunity for functionally 
graded materials and prestressing, repair, and strengthening 
prospects [6]. It also decreases or eliminates assembly time and 
expense [7, 8]. Metals, ceramics, and polymers are just a few 
materials that AM technology may work with [8-11]. Researchers 
and companies are becoming more interested in metallic materials 
[12]. Along with the aforementioned advantages, metal AM may 
offer other environmental benefits, including less waste, improved 
quality, lower emissions of pollutants, and the ability to produce 
components on demand [9, 10]. Even though metal AM offers 
significant advantages, only a small number of industries [13], 
including dentistry [14], construction [6], and aerospace [15], are 
now using metal AM technologies to their full potential. The 
biomedical and industries now manufacture metal additives to 
create highly customized or small-batch high-value end-use 
products [16, 17]. AM methods encompass a range of procedures 
that frequently involve an energy source, such as an electron beam 
or laser. Then, AM methods are divided into directed deposition 
and powder bed processes according to the kind of substrate 
employed. AM procedures include, but are not restricted to, EBM, 
DED, etc. The most common metallic materials used in AM are 
alloys made of steel, aluminum, titanium, and nickel [2]. The 
present status of metal additive manufacturing is authoritatively 
summarized in this overview, which covers basic procedures, 
materials, structural traits, and properties. It highlights how the 
technology has the ability to completely transform manufacturing 
by making sophisticated, high-performance metallic components 
possible. However, it also points out the problems that still need to 
be solved and the future lines of inquiry required to fully reap the 
rewards of 3D printed metal parts in various sectors. 

 
2. Additive manufacturing processes for metals 

The most appropriate term for 3D printing or rapid prototyping 
is AM. This technology is concerned with creating prototypes and 
finished goods in any form or size that meet specifications [18]. 
Using liquid or semisolid paste, powder, and solid materials, this 
new technique creates objects that may either be printed into their 
final dimensions and shape or, if necessary, postprocessed to take 
on their final shape [19, 20]. Utilizing traditional machining 
techniques to manufacture 3D printed objects is known as post-
processing. AM can quickly catch market updates because of its 
many applications, which include prototyping, printing end-user 
items, and repairing components at a cheaper cost and time. This 
offers excellent chances to get into the business [8, 21].  

2.1. Powder bed fusion (PBF) 

PBF techniques are used in most metal AM systems (Fig. 1). 
Direct Metal Laser Sintering (DMLS), Electron Beam Melting 

(EBM), Selective Laser Melting (SLM), and Direct Metal Laser 
Melting (DMLM) are standard metal PBF techniques [22]. Heat is 
used in all of these systems to fuse the powdered materials. The 
variations depend on the powder materials and energy source [7]. 
For example, EBM employs an electron beam as its energy source, 
whereas SLS, DMLS, and SLM use lasers [23]. Only metallic 
components are produced using SLM and DMLS techniques 
among these technologies [24]. The fundamental idea behind these 
two technologies is often the same. Laser Metal Fusion (LMF), 
another name for SLM, is mainly used for single-component 
metals like aluminum, whereas DMLS is frequently used for metal 
alloys like titanium and aluminum [25]. With the exception of the 
fact that laser beams produce fragile metal layers and a uniform 
melt pool, the DMLM method is pretty similar to the DMLS 
technique. The main benefits of this method over DMLS are 
reduced porosity and better surface quality [13]. In EBM 
technology, a high-energy electron beam is used to fuse metal 
powder together, instead of a laser in SLM printers. Owing to the 
components, they may be stacked inside the build volume. EBM 
technology is more productive than SLM systems. However, 
owing to the high energy density and quick heat cycles, the AM 
products still have greater degrees of distortion and residual 
stresses [26].  

 

Fig. 1. Schematic representation of PBF techniques [27].  

2.2. Directed energy deposition (DED) 

Methods often used to repair or add extra material to existing 
components, DED is a more sophisticated additive printing 
technique [28]. A nozzle on a multi-axis arm of a standard DED 
machine drops molten material onto a designated surface, where it 
hardens. A laser, electron beam, or plasma arc heat and melt the 
material. The thickness of the layer is the distance at which the 
item is lowered. Until every layer has been deposited, these 
procedures are repeated [14]. From an energy standpoint, DED 
may be divided into two primary groups: thermal energy and cold 
spray [29]. Kinetic energy, another name for cold spray, is the 
process of adding material in the form of small particles to a 
substrate that has enough kinetic energy to form a dense layer or 
coating [30]. Using a laser beam, electron beam, plasma, or arc, 
the other class of DED devices concentrates on thermal energy. 
This team adds the wire or powder feedstock material to the 
construction platform one at a time after selectively melting it [29]. 
Metal component fabrication is the main application for DED 
technology [31]. In order to print at greater deposition rates with 
lesser resolution, this AM group uses robotic welding methods 
[32]. Standard DED procedures include Lase Clading (LC), Laser-
Engineered Net Shaping (LENS), Wire-based Joule printing, 
Electron Beam Additive Manufacturing (EBEAM), Wire and Arc 
Additive Manufacturing (WAAM), and Hybrid Systems (HS) [33]. 
Table 1 summarizes typical DED procedures in this comparison 
table. 
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Table 1 
Common DED processes. 

Process Energy source Key characteristics Advantages Disadvantages Ref. 
EBEAM Electron beam Uses focused electron beam in 

vacuum, high deposition rates, 
and low residual stress 

High deposition rate; suitable for 
reactive materials, low residual stress 

Requires vacuum, high 
equipment cost, and limited 
material diversity 

[33] 

WAAM Electric arc 
(GMAW) 

Wire-based DED using arc 
welding, high material utilization, 
and large build volume 

High production rate (up to 5 kg/h); 
large build volume; low wire cost; 
mechanical properties comparable to 
forged parts 

Lower precision; requires 
post-machining; limited to 
wire feedstock 

[34] 

LENS High-power laser Powder-based laser DED, high 
precision; hermetically sealed argon 
environment to prevent oxidation 

High precision, versatile material 
options; suitable for repairs and 
adding features. 

High powder cost; powder 
handling challenges 

[35] 

LC Laser Laser melts feedstock to build or 
repair surface layers; often used 
for coating or repair 

High precision, good metallurgical 
bonding, suitable for surface 
enhancement 

Limited build size; slower 
than wire arc methods 

[36] 

HS Combination (laser + 
machining or arc)+ 

Combines different heat sources 
and feedstock types to optimize 
deposition 

Improved control over microstructure 
and properties; flexible feedstock 

Complex equipment, higher 
cost 

[37] 

2.3. Binder jetting (BJ) 

In comparison to metal PBF, BJ technology requires no support 
structures. It produces far more accurate objects by printing the 
desired metal parts in layers using metal powder and a liquid-state 
binder [38], as shown in Fig. 2. The binder droplets consolidate the 
powdered materials within and between sliced layers [13]. 

In addition to being an inert method, BJ offers many benefits, 
including the flexibility to employ a variety of materials like metal, 
polymer, and ceramics, and a considerable number of 
powder/binder combinations [14].  

 

Fig. 2. Schematic representation of BJ process [39]. 

 
3. Structural characteristics of 3D-printed metals 

The AM technique, which constructs components layer by 
layer, significantly impacts the unique structural properties of 3D-
printed metals. These traits impact their overall performance, 
microstructure, and mechanical qualities. 

3.1. Microstructure properties 

Anisotropic microstructures are produced when directional 
heat removal causes grains in techniques like as SLM and electron 
beam powder bed fusion (E-PBF) to elongate along the build 
direction. For instance, SLM 316L stainless steel has elongated 
austenitic grains around 10 µm wide to improve mechanical 
strength. These grains are far finer than their traditional wrought 
or cast counterparts [40, 41].  

Another critical factor is powder particle size; coarse powders 
encourage equiaxed fine grains, which enhance isotropy and 
mechanical qualities like strength and ductility, whereas fine 
powders often result in coarse-columnar grains [42].  

3.2. Mechanical properties 

Defects affect mechanical qualities, with porosity and surface 
quality being essential variables. Various approaches of lowering 

porosity have been put forth [43]. For instance, penetrating the 
sintered body with vitreous materials, applying cold/hot isostatic 
pressure on the green body, introducing dopants or a viscous 
liquid-forming phase, and selecting ceramic powders with an 
appropriate granulometric distribution [44, 45].  

 
4. Applications of metallic 3D-printing 

The capacity of metallic 3D printing to create intricate 
geometries, bespoke parts, and robust yet lightweight components 
make it useful in a variety of industries, including automotive and 
medical and etc.  

4.1. Automotive parts 

Because it may lower the research, production, and product 
costs of automotive components, AM technology is a valuable tool 
in this sector [46, 47]. It is especially intriguing for racing vehicles, 
where lightweight metals such titanium and aluminum and 
composites are utilized to create extremely complex structures, 
because it enables the production of tiny amounts of structural and 
functional pieces [46].  

4.2. Medical devices 

Recent advances in the fields of biomaterials, biological 
sciences, and biomedicine have increased the use of AM 
techniques. Customization is important in this field, and AM 
enables the production of a wide range of products with specific 
properties and shapes that meet the needs of the patient, such as 
drug delivery systems, medical devices, tissue scaffolds, 
diagnostic platforms, orthopedic and dental implants, and artificial 
organs [48]. In recent years, biofabrication through AM has 
emerged as a new alternative to fabricate tissues [49, 50]. A metal 
AM orthopedic device that is sold commercially is seen in Fig. 3a.  

 

(a) (b) 

Fig. 3. Parts made with additive manufacturing in dentistry and medicine: 
(a) an orthopedic device made of titanium alloy, and (b) a porous titanium 

spinal implant [13]. 



4 M. Rezaei-khamseh et al./ Journal of Composites and Compounds 6(2024) 1-5 

Another illustration is the Titanium AM spinal cage 
manufactured by the US-based Next Spine (Fig. 3b). This firm 
claims that when people age, have spinal malignancies, or 
experience trauma, spine surgery is becoming increasingly 
prevalent [51]. Custom orthopedic implants that are based on 
precise bone structure capture are another example. Based on a CT 
scan, Harrysson et al. [52] created integrated implants. They then 
used EBM or DMLS technologies to construct the unique 
implants, which were made of Ti6Al4V. 

 
5. Challenges in metal additive manufacturing 

Even while AM was developed to create prototypes quickly, it 
may also be used to create new items with complicated geometric 
designs by removing design and production limitations [53]. In 
order to revolutionize product lifecycle performance, AM is 
currently expanding quickly into a variety of industrial 
applications, from flexible design optimization to functional 
improvement [54].  

This inevitably brings with it more cross-disciplinary and case-
dependent research challenges, such as function-specific product 
design and simulation tools, high-quality cross-scale part 
fabrication, in-process monitoring and effective control, and 
dependable product lifecycle management. Resolving these 
challenges will increase fundamental research and provide tangible 
benefits to industries [1]. 

5.1. Material limitations 

Although the list of metals and alloys that are now acceptable 
for AM is small, the number of materials for metal AM 
technologies is growing. Stainless steel, gold, silver, Inconel, 
copper, titanium alloys, nickel-based superalloys, tool steels, 
aluminum alloys, platinum, palladium, and tantalum are just a few 
of the metal materials available to designers today [55, 56]. Since 
there aren't many metal materials available for AM systems, 
research and development are working to increase the number of 
materials and broaden the use of existing metal AM processes. 
High-entropy alloys, magnetic alloys, bulk metallic glasses 
(BMG), functionally graded materials (FGM), new metal 
composite structures, and nano-architected metals are a few 
examples of the cutting-edge research being done in these areas 
[13].  

5.2. Process optimization 

The thickness of each printed layer is determined by the AM 
technique, processing conditions, and raw material characteristics 
[57-59]. The thickness of each printed layer is affected by the 
following factors: material jetting techniques produce the finest 
layer thickness (≈ 0.02 mm) due to the small jetted droplets; 
powder bed fusion and vat polymerization origin lower layer 
thicknesses (≈ 0.1 mm) because of their ability to precisely focus 
the energy beam radius; and powder bed AM produces lower 
surface quality than the other AM techniques because of the 
presence of large and partially melted powder particles on the 
printed pieces' surfaces [14]. 

5.3. Design constraints 

Because of residual stresses, microstructural features, and 
relatively high surface roughness, AM processes have an impact 
on fatigue and fracture strength even though they provide 
previously unheard-of geometrical design freedom that can lead to 
significant weight reductions in components [60]. This is caused 

by flaws, distortions, anisotropy, and stress concentration effects, 
the impacts of which require further research [1].  

 
6. Conclusion 

Investigating 3-D printing for metallic components reveals a 
revolutionary approach to manufacturing that enables the 
production of intricate geometries, unique structures, and material 
properties that are unattainable with conventional techniques. 
Technologies for metal additive manufacturing, such as PBF, 
DED, and BJ, offer several advantages, including high accuracy, 
material efficiency, and design flexibility, which are driving 
innovation in the automotive, aerospace, and healthcare industries. 
Continuous advancements in process control and defect detection 
are enhancing part quality and reliability despite challenges, 
including high costs, size limitations, and the need for post-
processing. Metal 3D printing is emerging as a complementary and 
increasingly vital technology in modern manufacturing due to its 
ability to produce near-net-shape products with superior 
mechanical and thermal properties, as well as environmental 
benefits like reduced waste and energy consumption. The potential 
of metal additive manufacturing to transform production and 
unlock new opportunities in the engineering and biomedical fields 
will be further harnessed by future research focused on material 
discovery, process optimization, and application-specific 
solutions. 
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