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Biosensors are a fundamental component of point-of-care diagnostic technologies,
which are essential for early detection and real-time health monitoring. They play a
vital role in improving healthcare outcomes and making a significant societal impact
by facilitating rapid diagnostics and disease management. This review explores the
fundamentals of biosensors, including their operational principles, key components,
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disease detection. Furthermore, it discusses important performance metrics such as Oriadtes
sensitivity, specificity, stability, and reproducibility. Discases detection
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1. Introduction

Point-of-care (POC) diagnostics enable early detection and
real-time health monitoring, crucial for improving treatment
outcomes [1-4]. Biosensors significantly contribute to this by
supporting rapid, on-site disease detection and monitoring disease
progression, ultimately enhancing quality of life [5-8]. The
demand for biosensing systems that reliably detect physiological
signals and biomarkers, with biocompatible surfaces for safe
device—human interaction, drives ongoing innovation in sensing

* Corresponding author: Mehrasa Nikandish, E-mail: K21221255@kcl.ac.uk

materials, strategies, and device structures [9]. Biosensors are
compact devices that allow in situ analysis and POC testing,
transforming biological responses into electrical signals [1]. They
eliminate the need for traditional laboratory methods, offering
benefits such as low cost, speed, and reliability. Advances in
nanobiotechnology have enhanced biosensor capabilities, enabling
more straightforward alternatives to complex techniques like CT,
RT-PCR, ELISA, and lateral flow assays [10, 11]. A biosensor
integrates a biological recognition element, such as DNA,
enzymes, antibodies, or cells with a transducer that can be
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electrochemical, optical, or mechanical [12]. These sensors are
vital for early disease detection, monitoring health signals, and
assessing treatment effectiveness [13]. Recent progress has seen
significant improvements in transducing materials, device
architecture, and miniaturization, though challenges remain,
especially for wearable and implantable devices that interface
seamlessly with soft tissues [14].

Therefore, effective healthcare increasingly relies on
innovative, real-time sensing technologies capable of translating
biological and chemical signals into measurable outputs [15, 16].
This review covers the basics of biosensors, working principles,
core components, composite materials and their applications in
detecting infectious diseases, cancer biomarkers, metabolic and
chronic illnesses, along with discussions on performance and
ongoing challenges.

2. Fundamentals of biosensors

Biosensors are devices designed to identify specific biological
markers, such as proteins, DNA, RNA, or cells, and convert their
interactions into measurable electrical signals for digital output
[17]. They typically comprise biological components like nucleic
acids, enzymes, cell receptors, tissues, proteins, or engineered
molecules such as antibodies and aptamers, paired with physical
or chemical transducers, including optical, electrical, piezoelectric,
or electrochemical elements within a compact system [10, 18].

2.1. Key components

A biosensor integrates analytes, bioreceptors, transducers, and
output systems to quantify markers like cancer indicators. These
analytical tools process biological samples using specialized
detecting molecules in conjunction with electronic sensors and

Elements of a Biosensor

transducers to gather relevant information [17]. Fig. 1. illustrates
key elements and selected parts of a typical biosensor.

2.2. Working principles

Development of biosensors depends on the target analytes such
as cancer or immune markers, or genetic material found in
biological samples [19]. A typical biosensor includes a)
bioreceptors that selectively bind the analyte, b) an interface where
biological recognition occurs, generating a signal, ¢) a transducer
that converts this signal into an electronic form, which is amplified
and processed by circuitry and software, then d) presented via a
display or interface for the user [9]. Biosensors can analyze a range
of samples, including bodily fluids, food, cell cultures, or
environmental samples [17].

2.3. Types of biosensors

Classification varies based on the types of bioreceptors and
transducers used, with immobilization strategies for biorecognition
components on the transducer surface being essential [5]. Overall,
biosensors can be classified into three groups i.e., based on 1)
receptor type e.g., biocatalytic (enzymes), immunological
(antibodies), or nucleic acid-based (DNA) 2), transduction method
e.g., electrochemical, optical, piezoelectric, or thermal and 3)
application field e.g., medical, environmental, or wearable devices
[10, 18, 20]. Commercial biosensors are also categorized as
laboratory-based or portable. All biosensors require a stable
interface to ensure reliable and high-performance sensing [20].
Fig. 2 highlights the flow from analyte input to digital output,
involving molecules such as proteins, DNA, enzymes, and
antibodies, with  transducers categorized as  optical,
electrochemical, piezoelectric, or thermal depending on their
detection mechanisms and transducer systems [10, 17, 18].
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Fig. 2. Overview of the biosensor device workflow.
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2.3.1. ypes of biosensors based on transduction
method

Optical Biosensors detect interactions between
microorganisms and target analytes by measuring photons such as
luminescence, fluorescence, or color changes, in UV, visible, or
near-infrared ranges, rather than electrons [21]. Electrochemical
Biosensors rely on redox reactions, measuring changes in current,
voltage, or other parameters driven by electron transfer, with
electroactive materials playing a key role [13].

Piezoelectric Biosensors measure variations in resonant
frequency of piezoelectric crystals caused by mass changes during
biochemical interactions, like antibody-antigen binding or DNA
hybridization. They include devices like quartz crystal
microbalances and surface acoustic wave sensors, which translate
mechanical deformations into electrical signals. When external
forces, such as blood pressure, deform the crystal, electric dipoles
polarize, generating measurable currents proportional to the
applied pressure, used in applications like bacterial lysis
monitoring [22-25].

Thermal Biosensors detect heat produced or absorbed during
biochemical reactions. They use temperature changes, measured
by sensitive thermistors or calorimetric devices, to infer reaction
dynamics. These sensors often employ flow injection techniques
with immobilized enzymes and differential temperature
measurement, offering high stability and affordability, though they
have historically faced challenges like sensitivity issues [26-29].

Each type provides unique advantages for detecting biological
interactions, offering diverse tools for medical diagnostics,
environmental monitoring, and microbiology research [20].

3. Composite materials in biosensors

Nanomaterials, polymers (including conducting polymers and
biopolymers), and their combinations are commonly used in
biosensor interfaces [30]. Advances include monolayer
membranes and 3D structures, with growing applications of
nanocomposites. Biosensors are versatile tools in fields like food
safety, defense, environmental monitoring, and healthcare [20, 31,
32]. Conducting polymers (ICPs) and their composites are
particularly valued for their biocompatibility, efficient electron
transfer, and ability to immobilize biomolecules such as glucose,
DNA, cholesterol, aptamers, and cancer cells [33, 34].

3.1. Types of composites (polymer-, metal-, and carbon-
based)

Composites in biosensors can be broadly categorized into
several types. Polymer-based composites play a crucial role, with
conductive polymers often used to coat electrodes or immobilize
receptors [33], while biopolymers such as chitosan, agarose [20,
35], and hydrogels provide biocompatible matrices that facilitate
immobilization of biomolecules and enable efficient analyte
diffusion. Hydrogels, which are water-rich networks, can be
functionalized with nanoparticles or biomolecules to further
enhance sensor performance [14]. Inorganic materials like metal
oxides, including CuO, NiO, Fe,O,, and TiO,, are valued for their
catalytic activity and electrical properties, making them effective
electrocatalysts in biosensing applications [12]. Metal-organic
frameworks (MOFs), characterized by their crystalline and porous
nature, offer high stability, tunability, and functionalization
capabilities, making them ideal for the sensitive and selective
detection of biomedical analytes through various methods such as
electrochemical, fluorescence, or colorimetric assays [36]. Carbon
nanomaterials, especially carbon nanotubes (CNTs) and graphene,

provide exceptional electrical and mechanical properties; CNTs
are often employed in diagnostics and drug delivery, whereas
graphene enables highly sensitive detection of volatile organic
compounds (VOCs) related to disease diagnosis [12]. The
integration of nanomaterials like graphene with polymers or
biomolecules has significantly improved biosensors by enhancing
their sensitivity, lowering detection limits, and increasing
selectivity [1]. For example, in research by Villa et al., a carbon
nanotube-based immunosensor was successfully used to detect
rheumatoid arthritis antibodies in serum, demonstrating the
potential of these composite materials in advanced biosensing
technologies [37].

Another study highlighted that incorporating graphene, either
alone or in composites, enhances biosensor performance by
extending dynamic ranges, lowering detection limits, and
improving selectivity and miniaturization [38]. Furthermore,
recent research focused on composites of conducting polymers
(CPs) and graphene, which combine their exceptional electrical,
mechanical, and chemical properties, leading to increased interest
and application in advanced sensor design [39]. Fig. 3
demonstrates the diagram of hydrogel-based composites used for
health monitoring and disease diagnosis.
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Fig. 3. Diagram of hydrogel-based composites used for health monitoring
and disease diagnosis [14].

4. Fabrication techniques

The fabrication of affordable, flexible biosensors using organic
electronics and high-throughput printing techniques offers
significant advantages for chemical and biological detection.
Advances in organic materials and synthesis have improved
sensitivity, stability, and specificity, enabling detection of a wide
range of analytes [40]. A key step in biosensor development is
depositing (nano)materials onto conductive electrodes to enhance
performance by increasing surface area, supporting enzyme
immobilization, and boosting catalytic and bioaffinity properties
[41].

Microfluidic devices benefit from their high surface-to-volume
ratio, enabling efficient fluid management, reduced reaction
volumes, and precise temperature control, all at low cost [42].
Cutting-edge printing and deposition methods are transforming
biosensor manufacturing by increasing throughput, miniaturizing
features, and lowering costs. Techniques like inkjet, screen,
microcontact, gravure, lithography, plasma modification, and laser
printing are emerging as effective tools for patterning
biomolecules and materials at micro- and nano-scales, paving the
way for scalable, high-performance biodevices [43]. Fig. 4 shows
the different fabrication methods employed in creating
miniaturized microfluidic biosensors.
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Fig. 4. Different fabrication methods employed in creating biosensors.

5. Applications in disease detection

Biosensors have broad applications in disease detection,
exemplified by rapid tests for COVID-19, home pregnancy Kits,
cancer markers, pathogen identification, and glucose monitoring.
They are vital in disease management, food security, and
environmental safety due to their high specificity, portability, and
low cost [5, 15]. Different applications of biosensors are shown in
Fig. 5.
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Fig. 5. Different applications of biosensors.

5.1. Detection of infectious and metabolic diseases

In infectious disease detection, especially for COVID-19,
biosensors, particularly electrochemical ones based on conducting
polymers, offer promising alternatives to traditional methods like
PCR and CT scans [44]. These biosensors are advantageous
because they are rapid, sensitive, and suitable for point-of-care and
home use, although challenges remain regarding their stability and
interaction with biomarkers [17]. Studies show they can detect
various COVID-19 biomarkers such as viral RNA, proteins, and
whole viruses [44].

For metabolic and chronic diseases, breath analysis and VOC
detection provide non-invasive diagnostic tools. Recent research
employs molecularly imprinted polymers and nanostructured
electrodes to detect viral proteins like SARS-CoV-2 with high
sensitivity and specificity, facilitating rapid virus identification [1].
Similar approaches are used to monitor immune responses, such as
detecting antibodies against COVID-19 [45].

In diabetes management, biosensors measuring biomarkers like
glycated albumin complement traditional glucose tests, especially
when HbA Ic¢ results are unreliable. Bimetallic nanomaterial-based
biosensors on microelectrodes enable sensitive, broad-range
detection of diabetes biomarkers [46].

Additionally, biosensors are being developed for infectious
diseases such as Zika virus, where rapid, low-cost electrical
biosensors utilizing aptamers and advanced flow techniques can
detect viral proteins within minutes, significantly enhancing
diagnostic speed and accuracy [47].

Baradoke et al. developed an electrochemical sensor for SARS-
CoV-2 antibodies using gold nanoparticles on screen-printed
electrodes with immobilized Spike protein. It offered rapid
detection with a limit of 2 ng/mL, providing an effective tool for
monitoring immune response to COVID-19 [48].

5.2. Cancer biomarkers

In cancer diagnostics, biosensors enable early detection by
identifying biomarkers like microRNA-21, which is overexpressed
in many cancers. Innovative paper-based electrochemical
biosensors using gold inkjet printing are cost-effective and capable
of detecting miR-21 at very low concentrations, making them
suitable for resource-limited settings. Biosensors also hold
potential in monitoring cancer progression, metastasis, and the
effectiveness of treatments, offering quicker diagnostics and real-
time disease management [17, 49-52].

6. Performance evaluation and challenges

Biosensors, including piezoelectric and electrochemical types,
are highly sensitive and selective devices that utilize materials like
piezoelectric crystals and conducting polymers (CPs) [24, 25, 33].
Piezoelectric mechanisms show promise as alternative signal
transduction methods if issues like non-specific binding and
sensitivity are addressed. Conversely, biorecognition molecules
such as antibodies, DNA, or aptamers, often face hurdles related to
stability, nonspecific adsorption, and small analyte detection,
which limit their widespread commercial use despite extensive
research [12]. Moreover, electrochemical biosensors, especially
when combined with nanomaterials, offer high sensitivity,
simplicity, and low cost. However, challenges such as high
detection limits and inconsistent reproducibility remain. Recent
advancements include wearable glucose sensors and sweat
analysis patches [11]. Recent innovations involve combining CPs
with graphene-based materials (CP/GE composites), which
enhance flexibility, surface area, stability, and recognition capacity
[44]. High-sensitivity DNA biosensors based on graphene field-
effect transistors (GFETs) have demonstrated scalability and
reproducibility, with potential for rapid, inexpensive DNA
hybridization and sequencing, advancing genomics and diagnostic
applications [53].

Notably, Ping et al. developed a scalable, highly reproducible
(>90%) process for fabricating label-free DNA biosensors using
GFETs functionalized with single-stranded DNA. The sensor's
Dirac point voltage shifted systematically with target DNA
concentration, with a detection limit of 1 fM for 60-base DNA.
Tests with mismatched DNA confirmed that mismatch position
affects hybridization strength, highlighting the potential for fast,
cost-effective, and precise DNA detection and sequencing [53].

Overall, key challenges involve effectively capturing
biorecognition signals and converting them into measurable
outputs such as electrical, optical, or acoustic signals. Improving
transducer performance by increasing sensitivity, response speed,
reproducibility, and detection limits (down to single molecules) is
essential. Miniaturization via micro- and nano-fabrication
techniques is also crucial, as nanomaterials provide high surface
area and conductivity [12, 54].

In the third generation, it was shown that enzymes are
integrated directly into the sensing element, enabling electron
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transfer without mediators, which reduces costs and allows
repeated measurements [11]. Next-generation biosensors are
crucial for early disease detection and point-of-care diagnostics
due to their portability, rapid results, and multiplexing abilities
[53].

7. Conclusion

Biosensors are emerging as valuable tools in disease
management, particularly offering great promise for cancer
detection and monitoring. They can provide rapid, precise
measurements of cancer cells and metastasis, evaluate the
effectiveness of anticancer treatments, analyze cancer biomarkers,
and assess drug performance at specific target sites. Overall,
biosensors aim to shorten diagnostic times and track therapeutic
outcomes. Developing scalable, highly sensitive, and selective all-
electronic biosensors is essential for advancing research and
practical applications in disease and pathogen detection.
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