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A B S T R A C T 
 

A R T I C L E    I N F O R M A T I O N 

Copper nanoparticles (CuNPs) have garnered significant attention in biomedicine due 
to their various properties and potential applications. These nanoparticles exhibit 
promising antimicrobial, anticancer, and antioxidant activities, which enhance their 
value in nanomedicine applications. Their properties, shaped by the fabrication 
techniques, facilitate their application in drug delivery, cancer therapy, tissue 
engineering, and dental applications uses. Nevertheless, obstacles persist in attaining 
biocompatibility and regulated release, which are vital for effective clinical 
transference. Toxicological evaluations are essential to ensure the secure utilization of 
CuNPs. Additionally, studies are ongoing to find creative solutions to address these 
challenges and fully harness the medical potential of CuNPs. 
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1. Introduction 

When nanotechnology first emerged, it transformed several 
industries, most notably healthcare, where the unique properties of 
nanoparticles were utilized in innovative ways  [1-3]. Copper 
nanoparticles (CuNPs) have attracted significant attention due to 
their numerous applications in drug delivery, wound healing, 
cancer treatment [4]. 

 CuNPs is an excellent choice for various biomedical 
applications because of its intrinsic qualities, including 
biocompatibility and antibacterial effectiveness [5]. As antibiotic 
resistance becomes an increasing concern, recent studies have 
demonstrated that CuNPs exhibit potent antibacterial activity 
against various pathogens, including bacteria and fungi  [6, 7]. 
Among these, the synthesis of copper nanoparticles has evolved, 
with green synthesis methods gaining popularity for being cost-
effective and environmentally sustainable [8]. Producing CuNPs 
using plant extracts preserves their therapeutic biocompatibility, 
making them suitable for medical applications [9]. CuNPs are 
superior to conventional antibacterial agents due to their large 
surface area-to-volume ratio, enhancing their reactivity and 
antimicrobial effectiveness [10].  

CuNPs have been investigated for their potential use in tissue 
engineering and regenerative medicine and their antibacterial 
qualities. CuNPs may aid tissue regeneration and repair because 
they stimulate angiogenesis and improve wound healing processes 
[11]. CuNPs may be added to biomaterials for implants and 
prostheses to increase their functional performance and 
biocompatibility, which would benefit patients [12]. Furthermore, 
CuNPs' adaptability goes beyond only their antibacterial qualities. 
They have been investigated for use in biosensing technologies, 
where their localized surface plasmon resonance (SPR) may be 
adjusted to detect different biomolecules with greater sensitivity 
and specificity [13, 14]. As research continues to disclose the 
numerous possibilities of copper nanoparticles in biomedicine, it 
is vital to solve the problems connected with their utilization. To 
guarantee the safe and efficient use of CuNPs in clinical settings, 
issues with toxicity, environmental impact, and the requirement for 
standardized synthesis processes must be carefully considered 
[12]. 

A comprehensive understanding of copper's toxicity 
mechanisms and cell-affecting effects is essential, given the 
metal's recent widespread use and research. This study aims to 
provide a comprehensive overview of the state of copper 
nanoparticle research, focusing on potential future directions and 
biological applications. 

 
2. Synthesis and properties copper nanoparticles 

Several methods exist to create copper nanoparticles, including 
physical, chemical, and green synthesis techniques. The following 
sections will cover all of these methods. Methods and properties of 
CuNPs is shown in Table 1. 

2.1. Physical methods 

Physical getting techniques are less common than chemical or 
environmentally friendly procedures due to their drawbacks, 
which include the need for costly equipment and considerable 
energy consumption [15]. 

The reduction of metal ions in solution (chemical reduction 
method) is the primary chemical technique for creating metal 
nanoparticles due to its ease of usage [16]. Because it is easy to 
use, has a high production efficiency, and requires little equipment, 
the chemical reduction technique is frequently employed to 
produce CuNPs. Chemical-reducing agents are used in chemical 
reduction, as the name suggests. There are several options for their 
production because this technique may be further categorized 
based on the energy source or reaction device [17].  

The usage of hazardous compounds during the synthesis stage 
is one significant disadvantage. The development of 
environmentally friendly procedures is crucial, given the growing 
use of nanoparticles and their increased interaction with humans 
[18]. Surface-active microarrays formed by immiscible water-oil, 
oil-water, and water supercritical carbon dioxide are used in the 
microemulsion reduction process, also known as colloidal 
synthesis [19].  

Ultrasonic waves with a frequency of around 20 kHz to 10 
MHz are the basis of sonochemical reduction; acoustic cavitation, 
a physical phenomenon, drives the reaction [20]. Cu NPs may now 
be produced with consistent particle size and shape using 
hydrothermal treatment and microwaves [21]. The electromagnetic 
energy used in microwave technology has frequencies between 
300 MHz and 300 GHz [22]. 

2.2. Chemical methods 

Compared to chemical synthesis, physical synthesis produces 
nanoparticles with homogeneous distribution and no solvent 
contamination [23]. Unconventional physical procedures, 
including those requiring vacuum or plasma, can occasionally 
produce low-quality nanoparticles.  

In order to remove or extract atoms from a bulk surface by 
emitting a laser beam, a number of physical approaches are used 
before or after a chemical process. For instance, laser ablation 
necessitates a colloidal solution, which reduces the possibility of 
oxidation on the nanoparticles' surface and must be put in a 
vacuum chamber. This method is not practical because of the 
intricacy of the apparatus and the high energy required for the laser 
[24].  

Two crucial factors in determining the particle size are the 
duration of exposure and the quantity of laser beam pulses used. In 
contrast to previous physical methods, the ions are implanted on a 
solid substrate using a pulsed electrical current in the Pulsed Wire 
Discharge (PWD) process [25]. Physical getting techniques are 
less common than chemical or environmentally friendly 
procedures due to their drawbacks, which include the need for 
costly equipment and considerable energy consumption [26]. 

Table 1 
Methods and properties of CuNPs. 

Synthesis Methods Properties Refs. 
Chemical Thermal decomposition Production of stable nanoparticle and antibacterial activity [44] 

Chemical reduction Controlled size and morphology [15] 
Microwave technique Regular particle size and morphology [21] 

Physical Evaporation–condensation Small nanoparticles [23] 
Laser beam Complexity of the equipment [24] 
Aerosol technique Controlled size and morphology [45] 

Green synthesis Plant and fruit extract mediated Antimicrobial and antiviral activity [46, 47] 
Bacterial and fungal-mediated Antimicrobial, antioxidant, and cytotoxic activity [48] 
Algal mediated Economical, eco-friendly, energy-efficient and less-toxic [49] 
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2.3. Green synthesis 

Green synthesis is often used as a safe method for producing 
metallic nanoparticles. This technique utilizes reducing agent 
molecules present in microorganisms, such as fungi and bacteria, 
as well as in plants [27]. Compared to chemical synthesis, it is less 
expensive, simpler, faster, and more sustainable. It also uses more 
environmentally acceptable resources. Given the incredible 
difficulty in maintaining cell cultures, it is preferred to employ 
plant extracts rather than microorganisms to produce nanoparticles 
[28]. The biomolecules found in plants, including proteins, amino 
acids, vitamins, alkaloids, terpenoids, flavones, ketones, 
aldehydes, tannins, phenolics, saponins, and polysaccharides, are 
essential for the reduction of metals [29]. Plant biomass is utilized 
as an extract or as a powder. They are combined with the metal 
solution of choice. The steps of the synthesis are shown in Fig.1.  

 

Fig. 1. Schematic illustration of the synthesis of CuNPs by plants [32]. 

Common precursor copper salts employed in the production of 
Cu NPs include copper (II) sulfate pentahydrate (CuSO₄.5H₂0), 
cupric acetate (monohydrate) (CH3COO) (2Cu·H2O), copper (II) 
nitrate (Cu (NO3)2), and others. Typically, the extract is combined 
with a metal salt solution at room temperature and the appropriate 
pH, either with or without stirring. The synthesis of NPs will be 
finished in a short period [30, 31]. Due to their high metal 

resistance and ease of handling, several fungi have been used for 
the biogenic production of copper nanoparticles. They produce a 
range of extracellular enzymes that are crucial to the manufacture 
of metallic nanoparticles. CuNPs were synthesized using 
Aspergillus niger because of its capacity to bioaccumulate metals. 
The common filamentous fungus A. niger has a range of enzymes, 
including hydrolytic and oxidative enzymes, that allow metal ions 
to be absorbed from aqueous solutions [33]. Algae are a varied 
collection of plants being investigated for potential use in 
nanotechnology. In addition to producing NPs, algae are being 
investigated for their nutritional value, ability to increase bio-
diesel, and extensive potential for medicinal use. Compared to 
chemically manufactured silver nanoparticles, their documented 
antibacterial action against bacteria recovered from the sick 
silkworm was found to be more effective, and it is anticipated that 
they would be biocompatible [34]. 

 
3. Biomedical application of copper 

Together with other metallic NPs like silver (Ag) [35] and gold 
(Au) [36], Cu nanoparticle may be used as appealing substitutes in 
nanomedicine because of their possible antiviral properties, low 
toxicity, antifungal and antibacterial activity, excellent 
biocompatibility, oxidation resistance, and better availability at 
cheaper prices [37]. Table 2 provides information on the 
characteristics and uses of copper nanoparticles. 

3.1. Drug delivery systems 

Effectively targeting tissues with therapeutic molecules 
remains one of the most significant challenges in drug discovery 
[38, 39]. Copper nanoparticles have gained popularity as drug 
delivery vehicles due to their vast surface area-to-volume ratio, 
changeable surface chemistry, and ability to encapsulate a wide 
range of medications [40]. Several methods, such as surface 
functionalization, encapsulation in polymeric matrices, and 
stimuli-responsive drug release procedures, have been used to 
construct CuNPs-based drug delivery systems [41].  

Table 2 
Properties, applications, and synthesis methods of copper nanoparticle. 

 

Ref. Applications Properties Methods of synthesis Types of copper 
nanoparticles 

[62] Treatment of various bacterial, and 
particularly, fungal infections 

Improve anti-bacterial and anti-fungal 
activities 

Green synthesis (M. 
Oleifera leaves) 

CuNPs 

[63] Cancer therapy The relevance of biosafety enhancing the 
antitumor 

Green synthesis 
(Crataegus rose fruits) 

CuNPs 

[52] Cancer therapy Optimizing the uptake and increasing 
potential of gene therapy 

Green synthesis (Melia 
azedarach leaves) 

CuONPs 

[64] Anti-inflammatory Better anti-inflammatory activity and less 
biotoxic 

Green synthesis (musa 
sapientum plant) 

CuNPs 

[65] Drug delivery Development of antimicrobial agents Chemical method CuNPs 
[14] Electrocatalytic activity Outstanding catalytic activity Chemical method CuNPs/NGO 
[13] Biosensor applications Size reduction Chemical method CuO/CuNps 
[66] Treat infected wounds Increasing the antibacterial effect up to six 

times 
Chemical method CuO/AgNPs 

[67] Antimicrobial activity Better antimicrobial activity against E. Coli 
and S. Aureus 

Green synthesis (S. 
Didymobotrya methanolic 
root extract) 

CuNPs 

[68] Antimicrobial activity Cunps that are prepared using green 
synthesis have smaller nanoparticle size 

Chemical and Green 
synthesis 

CuNPs 

[69] Antifungal activity Excellent antifungal activity against C. 
Albicans 

Green synthesis  CuO/NPs 

[59] Tissue engineering Acceptable antimicrobial effects against E. 
Faecalis, P. Aeruginosa, and C. Albicans 

Chemical method CuO/NPs 

[70] Biomedical applications  Antibacterial capabilities, environmentally 
friendly and cost-effective 

Green synthesis (black tea 
leaves 

CuNPs 

[71] Therapeutic applications Less toxicity properties and antibacterial 
activity 

Green synthesis (Nigella 
sativa seeds extract) 

CuNPs 

[72] Anticancer activity Antimicrobial properties Green synthesis (ginger 
and garlic) 

CuNPs 

[73] Dental adhesive Antimicrobial properties Green synthesis CuNPs with adhesive resin 
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The surface functionalization of CuNPs with targeting ligands, 
such as peptides or antibodies, enables targeted cell attachment and 
recognition, increasing the efficacy of drug delivery [42]. 
According to Assadi et al. [43], CuNPs interacts with antibiotics 
and functions as a transporter of tetracycline, enhancing its 
accumulation in bacteria. 

In a different study, Verma et al. [50] produced mupirocin-
paired copper nanoparticles to overcome drug resistance in 
Staphylococcus aureus, which causes dermal skin infections. They 
found that a gel comprising Mupirocin and Cu NPs was more 
effective against S. aureus due to its sustained release than a pure 
drug.  

Phull et al. [51] synthesized the CuO-Fu-NPs. MTT, TUNEL, 
and western blot tests showed that the CuO-Fu-NPs could 
influence apoptosis and growth signaling molecules and had anti-
proliferative and genotoxic effects on the cancer cells. The study's 
findings highlight the importance of using naturally occurring 
compounds to increase the amount of organic and inorganic 
metallic nanoparticles in natural product medication development, 
which may have therapeutic benefits and anticancer drug delivery 
potential. The anticancer mechanism of the produced fucoidan-
capped copper oxide nanoparticles is depicted in Fig.2.  

 

Fig. 2. Anticancer mechanism of the synthesized fucoidan-capped copper 
oxide nanoparticles (CuO-Fu-NPs) [51]. 

3.2. Cancer therapy 

With their many advantages, such as drug stability, appropriate 
biodistribution, enhanced therapeutic index, and active agent 
delivery to the precise location (active or passive targeting), copper 
and copper oxide nanoparticles have attracted much interest in the 
biomedical domains [52, 53]. Copper-based nanomaterials (Hc-
CuO NPs) were created by Chen et al. [54] and comprised of herbal 
extract of Houttuynia cordata (Hc) and copper oxide (II) 
nanoparticles, which range in size from 40 to 45 nm. By targeting 
PI3K/Akt (the phosphatidylinositol 3-kinase/protein kinase B) 
signaling pathways in cancer cells, the scientists demonstrated that 
Hc-CuO NPs suppressed the growth of cervical cancer in vitro by 
overproducing ROS and inducing death. Copper oxide (II) 
nanoparticles coated with fucoidan from Undaria pinnatifida algae 
showed genotoxic and antiproliferative effects on HeLa cells, 
according to Abdelhakm et al. [55].  

A potent antibacterial effect is often produced by photothermal 
treatment, which is directly influenced by particle concentration 
and laser strength. In Tao et al. [56] study, methacrylate-modified 
gelatin was used to polymerize CuNPs drastically chelated with N, 
N-bis(acryloyl)-cystamine (BACA) CuNP proximity resulted in a 
localized surface plasmon with resonance at 808 nm, creating a 
three-dimensional network. Depending on the laser intensity and 

copper concentration, the CuNPs-hydrogel may raise the 
temperature by up to 40 degrees in 4 minutes at this wavelength. 
In a different study, Cabral et al. [57] showed that PL-based 
hydrogels with CuO NPs or GSNO had a good chance of killing 
cancer cells. This creates a new therapy option for skin cancer. 

3.3. Tissue engineering  

Their exceptional cost-effectiveness justifies the use of copper 
nanoparticles over other metal nanoparticles [58]. Because copper 
nanoparticles have antibacterial qualities, using them with fabric 
softeners is highly advantageous, especially considering the many 
drawbacks of different fabric softener additions [59]. 
Incorporating antimicrobial compounds into tissue conditioner 
structures has been the subject of several attempts. These additions 
include antibacterial nanoparticles, essential and herbal oils, and 
antibiotics [60].  

Several shortcomings have been noted for the instances under 
investigation, even though some of these tissue conditioners 
exhibit encouraging effects against bacteria. The unstable nature 
of the components supplied to the tissue conditioner and its 
detrimental impact on its mechanical qualities are two examples of 
these flaws. There are currently no commercially available 
antimicrobial tissue conditioners, even though antimicrobial 
compounds benefit tissue conditioners [61]. 

Tissue conditioners using copper oxide nanoparticles shown 
respectable antibacterial activity against E. faecalis, P. aeruginosa, 
and C. albicans in a study by Nikanjam et al. [59]. 

3.4. Dental applications 

CuNPs have bio-physiochemical and antibacterial qualities. 
They enhance the material pool to reduce the scarcity of dental 
materials for various clinical applications. Dental metals and 
alloys, dental cement, dental polymers and resins, and other dental 
materials are typically made with copper nanoparticles [10]. 
According to Gomez et al. [74], covering dental implant healing 
caps with copper nanoparticles prevented the growth of germs and 
biofilms. However, another study by Liu et al. [75] showed that an 
implant made of titanium alloy containing copper has anti-
infective qualities against oral bacteria. Additionally, they showed 
that titanium–copper alloy was biocompatible and prevented peri-
implant infections. Different research by Torres et al. [76] 
demonstrated that adding copper nanoparticles to an adhesive 
enhanced its antibacterial qualities and shear bond strength without 
causing cytotoxicity. 

 
4. Future perspectives 

The research on copper nanoparticles and copper-based 
nanomaterials has been less comprehensive than other metallic 
nanoparticles like gold, silver, or platinum [12]. Broad and reliable 
information on biokinetics and biodistribution is generally lacking, 
and much less is known about long-term persistence in the 
environment and body. A logical design of copper-based 
nanocomposites and nanostructured materials is anticipated to 
become more critical in several applications, such as topical 
therapy, antivirals, antimicrobial tissues and surfaces, and cancer. 
The studies included in this review emphasize that copper is only 
harmful when it is more than what the body can process. 
Substantial control over the quantity of copper injected or 
discharged is essential to reducing the negative consequences. In 
order to maintain an adequate amount of copper for effective 
antibacterial action while preventing an overload, slow-releasing 
NPs may be crucial [77]. On the other hand, difficulties and safety 
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issues might be a significant worry. Another challenge is 
developing reproducible and scalable synthesis methods for 
producing copper nanoparticles in an ecologically responsible 
manner. Even though a number of green synthesis techniques have 
been reported in the literature, producing consistent nanoparticle 
sizes, shapes, and dispersibility remains highly challenging [78]. 
In conclusion, despite the tremendous progress made in the last 
few decades in comprehending how Cu surfaces and NPs affect 
microbes, there are still a lot of unresolved issues about their 
antimicrobial properties [79].  

 
5. Conclusion 

Research on CuNPs for biomedical applications shows their 
significant potential in various therapeutic fields, including wound 
healing, antibacterial treatments, and cancer therapies.  In term of 
to current research, CuNPs have exceptional antibacterial qualities 
that enable them to fight various diseases successfully, making 
them valuable tools for infection control and preventative 
measures. The unique physicochemical properties of CuNPs 
facilitate the targeted and controlled release of therapeutic agents, 
improving treatment effectiveness while reducing systemic 
toxicity. Their potential as drug delivery vehicles is similarly 
intriguing. Even though copper nanoparticles have great promise 
for use in biomedicine, further study is needed to understand the 
safety and effectiveness concerns fully. 
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