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ABSTRACT ARTICLE INFORMATION
Copper nanoparticles (CuNPs) have garnered significant attention in biomedicine due Article History:

to their various properties and potential applications. These nanoparticles exhibit Received 11 September 2024

promising antimicrobial, anticancer, and antioxidant activities, which enhance their Received in revised from 15 November 2024
value in nanomedicine applications. Their properties, shaped by the fabrication Accepted 23 December 2024

techniques, facilitate their application in drug delivery, cancer therapy, tissue

engineering, and dental applications uses. Nevertheless, obstacles persist in attaining Ié?l; V;erfa;opmicles
biocompatibility and regulated release, which are vital for effective clinical Antibacterial
transference. Toxicological evaluations are essential to ensure the secure utilization of St

CuNPs. Additionally, studies are ongoing to find creative solutions to address these Biocompatibility

challenges and fully harness the medical potential of CuNPs.
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1. Introduction

When nanotechnology first emerged, it transformed several
industries, most notably healthcare, where the unique properties of
nanoparticles were utilized in innovative ways [1-3]. Copper
nanoparticles (CuNPs) have attracted significant attention due to
their numerous applications in drug delivery, wound healing,
cancer treatment [4].

CuNPs is an excellent choice for various biomedical
applications because of its intrinsic qualities, including
biocompatibility and antibacterial effectiveness [5]. As antibiotic
resistance becomes an increasing concern, recent studies have
demonstrated that CuNPs exhibit potent antibacterial activity
against various pathogens, including bacteria and fungi [6, 7].
Among these, the synthesis of copper nanoparticles has evolved,
with green synthesis methods gaining popularity for being cost-
effective and environmentally sustainable [8]. Producing CuNPs
using plant extracts preserves their therapeutic biocompatibility,
making them suitable for medical applications [9]. CuNPs are
superior to conventional antibacterial agents due to their large
surface area-to-volume ratio, enhancing their reactivity and
antimicrobial effectiveness [10].

CuNPs have been investigated for their potential use in tissue
engineering and regenerative medicine and their antibacterial
qualities. CuNPs may aid tissue regeneration and repair because
they stimulate angiogenesis and improve wound healing processes
[11]. CuNPs may be added to biomaterials for implants and
prostheses to increase their functional performance and
biocompatibility, which would benefit patients [12]. Furthermore,
CuNPs' adaptability goes beyond only their antibacterial qualities.
They have been investigated for use in biosensing technologies,
where their localized surface plasmon resonance (SPR) may be
adjusted to detect different biomolecules with greater sensitivity
and specificity [13, 14]. As research continues to disclose the
numerous possibilities of copper nanoparticles in biomedicine, it
is vital to solve the problems connected with their utilization. To
guarantee the safe and efficient use of CuNPs in clinical settings,
issues with toxicity, environmental impact, and the requirement for
standardized synthesis processes must be carefully considered
[12].

A comprehensive understanding of copper's toxicity
mechanisms and cell-affecting effects is essential, given the
metal's recent widespread use and research. This study aims to
provide a comprehensive overview of the state of copper
nanoparticle research, focusing on potential future directions and
biological applications.

2. Synthesis and properties copper nanoparticles

Several methods exist to create copper nanoparticles, including
physical, chemical, and green synthesis techniques. The following
sections will cover all of these methods. Methods and properties of
CuNPs is shown in Table 1.

2.1. Physical methods

Physical getting techniques are less common than chemical or
environmentally friendly procedures due to their drawbacks,
which include the need for costly equipment and considerable
energy consumption [15].

The reduction of metal ions in solution (chemical reduction
method) is the primary chemical technique for creating metal
nanoparticles due to its ease of usage [16]. Because it is easy to
use, has a high production efficiency, and requires little equipment,
the chemical reduction technique is frequently employed to
produce CuNPs. Chemical-reducing agents are used in chemical
reduction, as the name suggests. There are several options for their
production because this technique may be further categorized
based on the energy source or reaction device [17].

The usage of hazardous compounds during the synthesis stage
is one significant disadvantage. The development of
environmentally friendly procedures is crucial, given the growing
use of nanoparticles and their increased interaction with humans
[18]. Surface-active microarrays formed by immiscible water-oil,
oil-water, and water supercritical carbon dioxide are used in the
microemulsion reduction process, also known as colloidal
synthesis [19].

Ultrasonic waves with a frequency of around 20 kHz to 10
MHz are the basis of sonochemical reduction; acoustic cavitation,
a physical phenomenon, drives the reaction [20]. Cu NPs may now
be produced with consistent particle size and shape using
hydrothermal treatment and microwaves [21]. The electromagnetic
energy used in microwave technology has frequencies between
300 MHz and 300 GHz [22].

2.2. Chemical methods

Compared to chemical synthesis, physical synthesis produces
nanoparticles with homogeneous distribution and no solvent
contamination [23]. Unconventional physical procedures,
including those requiring vacuum or plasma, can occasionally
produce low-quality nanoparticles.

In order to remove or extract atoms from a bulk surface by
emitting a laser beam, a number of physical approaches are used
before or after a chemical process. For instance, laser ablation
necessitates a colloidal solution, which reduces the possibility of
oxidation on the nanoparticles' surface and must be put in a
vacuum chamber. This method is not practical because of the
intricacy of the apparatus and the high energy required for the laser
[24].

Two crucial factors in determining the particle size are the
duration of exposure and the quantity of laser beam pulses used. In
contrast to previous physical methods, the ions are implanted on a
solid substrate using a pulsed electrical current in the Pulsed Wire
Discharge (PWD) process [25]. Physical getting techniques are
less common than chemical or environmentally friendly
procedures due to their drawbacks, which include the need for
costly equipment and considerable energy consumption [26].

Table 1
Methods and properties of CuNPs.
Synthesis Methods Properties Refs.
Chemical Thermal decomposition Production of stable nanoparticle and antibacterial activity [44]
Chemical reduction Controlled size and morphology [15]
Microwave technique Regular particle size and morphology [21]
Physical Evaporation—condensation Small nanoparticles [23]
Laser beam Complexity of the equipment [24]
Aerosol technique Controlled size and morphology [45]
Green synthesis Plant and fruit extract mediated Antimicrobial and antiviral activity [46, 47]
Bacterial and fungal-mediated Antimicrobial, antioxidant, and cytotoxic activity [48]
Algal mediated Economical, eco-friendly, energy-efficient and less-toxic [49]
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2.3. Green synthesis

Green synthesis is often used as a safe method for producing
metallic nanoparticles. This technique utilizes reducing agent
molecules present in microorganisms, such as fungi and bacteria,
as well as in plants [27]. Compared to chemical synthesis, it is less
expensive, simpler, faster, and more sustainable. It also uses more
environmentally acceptable resources. Given the incredible
difficulty in maintaining cell cultures, it is preferred to employ
plant extracts rather than microorganisms to produce nanoparticles
[28]. The biomolecules found in plants, including proteins, amino
acids, vitamins, alkaloids, terpenoids, flavones, ketones,
aldehydes, tannins, phenolics, saponins, and polysaccharides, are
essential for the reduction of metals [29]. Plant biomass is utilized
as an extract or as a powder. They are combined with the metal
solution of choice. The steps of the synthesis are shown in Fig.1.
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Fig. 1. Schematic illustration of the synthesis of CuNPs by plants [32].

Common precursor copper salts employed in the production of
Cu NPs include copper (II) sulfate pentahydrate (CuSOa.5H:0),
cupric acetate (monohydrate) (CH;COO) (2Cu-H,0), copper (II)
nitrate (Cu (NOs),), and others. Typically, the extract is combined
with a metal salt solution at room temperature and the appropriate
pH, either with or without stirring. The synthesis of NPs will be
finished in a short period [30, 31]. Due to their high metal

Table 2
Properties, applications, and synthesis methods of copper nanoparticle.

resistance and ease of handling, several fungi have been used for
the biogenic production of copper nanoparticles. They produce a
range of extracellular enzymes that are crucial to the manufacture
of metallic nanoparticles. CuNPs were synthesized using
Aspergillus niger because of its capacity to bioaccumulate metals.
The common filamentous fungus A. niger has a range of enzymes,
including hydrolytic and oxidative enzymes, that allow metal ions
to be absorbed from aqueous solutions [33]. Algae are a varied
collection of plants being investigated for potential use in
nanotechnology. In addition to producing NPs, algae are being
investigated for their nutritional value, ability to increase bio-
diesel, and extensive potential for medicinal use. Compared to
chemically manufactured silver nanoparticles, their documented
antibacterial action against bacteria recovered from the sick
silkworm was found to be more effective, and it is anticipated that
they would be biocompatible [34].

3. Biomedical application of copper

Together with other metallic NPs like silver (Ag) [35] and gold
(Au) [36], Cu nanoparticle may be used as appealing substitutes in
nanomedicine because of their possible antiviral properties, low
toxicity, antifungal and antibacterial activity, excellent
biocompatibility, oxidation resistance, and better availability at
cheaper prices [37]. Table 2 provides information on the
characteristics and uses of copper nanoparticles.

3.1. Drug delivery systems

Effectively targeting tissues with therapeutic molecules
remains one of the most significant challenges in drug discovery
[38, 39]. Copper nanoparticles have gained popularity as drug
delivery vehicles due to their vast surface area-to-volume ratio,
changeable surface chemistry, and ability to encapsulate a wide
range of medications [40]. Several methods, such as surface
functionalization, encapsulation in polymeric matrices, and
stimuli-responsive drug release procedures, have been used to
construct CuNPs-based drug delivery systems [41].

Types of copper

. Methods of synthesis Properties Applications Ref.
nanoparticles
CuNPs Green synthesis (M. Improve anti-bacterial and anti-fungal Treatment of various bacterial, and [62]
Oleifera leaves) activities particularly, fungal infections
CuNPs Green synthesis The relevance of biosafety enhancing the Cancer therapy [63]
(Crataegus rose fruits) antitumor
CuONPs Green synthesis (Melia Optimizing the uptake and increasing Cancer therapy [52]
azedarach leaves) potential of gene therapy
CuNPs Green synthesis (musa Better anti-inflammatory activity and less Anti-inflammatory [64]
sapientum plant) biotoxic
CuNPs Chemical method Development of antimicrobial agents Drug delivery [65]
CuNPs/NGO Chemical method Outstanding catalytic activity Electrocatalytic activity [14]
CuO/CuNps Chemical method Size reduction Biosensor applications [13]
CuO/AgNPs Chemical method Increasing the antibacterial effect up to six Treat infected wounds [66]
times
CuNPs Green synthesis (S. Better antimicrobial activity against E. Coli Antimicrobial activity [67]
Didymobotrya methanolic  and S. Aureus
root extract)
CuNPs Chemical and Green Cunps that are prepared using green Antimicrobial activity [68]
synthesis synthesis have smaller nanoparticle size
CuO/NPs Green synthesis Excellent antifungal activity against C. Antifungal activity [69]
Albicans
CuO/NPs Chemical method Acceptable antimicrobial effects against E. Tissue engineering [59]
Faecalis, P. Aeruginosa, and C. Albicans
CuNPs Green synthesis (black tea  Antibacterial capabilities, environmentally Biomedical applications [70]
leaves friendly and cost-effective
CuNPs Green synthesis (Nigella Less toxicity properties and antibacterial Therapeutic applications [71]
sativa seeds extract) activity
CuNPs Green synthesis (ginger Antimicrobial properties Anticancer activity [72]
and garlic)
CuNPs with adhesive resin Green synthesis Antimicrobial properties Dental adhesive [73]
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The surface functionalization of CuNPs with targeting ligands,
such as peptides or antibodies, enables targeted cell attachment and
recognition, increasing the efficacy of drug delivery [42].
According to Assadi et al. [43], CuNPs interacts with antibiotics
and functions as a transporter of tetracycline, enhancing its
accumulation in bacteria.

In a different study, Verma et al. [50] produced mupirocin-
paired copper nanoparticles to overcome drug resistance in
Staphylococcus aureus, which causes dermal skin infections. They
found that a gel comprising Mupirocin and Cu NPs was more
effective against S. aureus due to its sustained release than a pure
drug.

Phull et al. [51] synthesized the CuO-Fu-NPs. MTT, TUNEL,
and western blot tests showed that the CuO-Fu-NPs could
influence apoptosis and growth signaling molecules and had anti-
proliferative and genotoxic effects on the cancer cells. The study's
findings highlight the importance of using naturally occurring
compounds to increase the amount of organic and inorganic
metallic nanoparticles in natural product medication development,
which may have therapeutic benefits and anticancer drug delivery
potential. The anticancer mechanism of the produced fucoidan-
capped copper oxide nanoparticles is depicted in Fig.2.
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Fig. 2. Anticancer mechanism of the synthesized fucoidan-capped copper
oxide nanoparticles (CuO-Fu-NPs) [51].

3.2. Cancer therapy

With their many advantages, such as drug stability, appropriate
biodistribution, enhanced therapeutic index, and active agent
delivery to the precise location (active or passive targeting), copper
and copper oxide nanoparticles have attracted much interest in the
biomedical domains [52, 53]. Copper-based nanomaterials (Hc-
CuO NPs) were created by Chen et al. [54] and comprised of herbal
extract of Houttuynia cordata (Hc) and copper oxide (II)
nanoparticles, which range in size from 40 to 45 nm. By targeting
PI3K/Akt (the phosphatidylinositol 3-kinase/protein kinase B)
signaling pathways in cancer cells, the scientists demonstrated that
He-CuO NPs suppressed the growth of cervical cancer in vitro by
overproducing ROS and inducing death. Copper oxide (II)
nanoparticles coated with fucoidan from Undaria pinnatifida algae
showed genotoxic and antiproliferative effects on HeLa cells,
according to Abdelhakm et al. [55].

A potent antibacterial effect is often produced by photothermal
treatment, which is directly influenced by particle concentration
and laser strength. In Tao et al. [56] study, methacrylate-modified
gelatin was used to polymerize CuNPs drastically chelated with N,
N-bis(acryloyl)-cystamine (BACA) CuNP proximity resulted in a
localized surface plasmon with resonance at 808 nm, creating a
three-dimensional network. Depending on the laser intensity and

copper concentration, the CuNPs-hydrogel may raise the
temperature by up to 40 degrees in 4 minutes at this wavelength.
In a different study, Cabral et al. [57] showed that PL-based
hydrogels with CuO NPs or GSNO had a good chance of killing
cancer cells. This creates a new therapy option for skin cancer.

3.3. Tissue engineering

Their exceptional cost-effectiveness justifies the use of copper
nanoparticles over other metal nanoparticles [58]. Because copper
nanoparticles have antibacterial qualities, using them with fabric
softeners is highly advantageous, especially considering the many
drawbacks of different fabric softener additions [59].
Incorporating antimicrobial compounds into tissue conditioner
structures has been the subject of several attempts. These additions
include antibacterial nanoparticles, essential and herbal oils, and
antibiotics [60].

Several shortcomings have been noted for the instances under
investigation, even though some of these tissue conditioners
exhibit encouraging effects against bacteria. The unstable nature
of the components supplied to the tissue conditioner and its
detrimental impact on its mechanical qualities are two examples of
these flaws. There are currently no commercially available
antimicrobial tissue conditioners, even though antimicrobial
compounds benefit tissue conditioners [61].

Tissue conditioners using copper oxide nanoparticles shown
respectable antibacterial activity against E. faecalis, P. aeruginosa,
and C. albicans in a study by Nikanjam et al. [59].

3.4. Dental applications

CuNPs have bio-physiochemical and antibacterial qualities.
They enhance the material pool to reduce the scarcity of dental
materials for various clinical applications. Dental metals and
alloys, dental cement, dental polymers and resins, and other dental
materials are typically made with copper nanoparticles [10].
According to Gomez et al. [74], covering dental implant healing
caps with copper nanoparticles prevented the growth of germs and
biofilms. However, another study by Liu et al. [75] showed that an
implant made of titanium alloy containing copper has anti-
infective qualities against oral bacteria. Additionally, they showed
that titanium—copper alloy was biocompatible and prevented peri-
implant infections. Different research by Torres et al. [76]
demonstrated that adding copper nanoparticles to an adhesive
enhanced its antibacterial qualities and shear bond strength without
causing cytotoxicity.

4. Future perspectives

The research on copper nanoparticles and copper-based
nanomaterials has been less comprehensive than other metallic
nanoparticles like gold, silver, or platinum [12]. Broad and reliable
information on biokinetics and biodistribution is generally lacking,
and much less is known about long-term persistence in the
environment and body. A logical design of copper-based
nanocomposites and nanostructured materials is anticipated to
become more critical in several applications, such as topical
therapy, antivirals, antimicrobial tissues and surfaces, and cancer.
The studies included in this review emphasize that copper is only
harmful when it is more than what the body can process.
Substantial control over the quantity of copper injected or
discharged is essential to reducing the negative consequences. In
order to maintain an adequate amount of copper for effective
antibacterial action while preventing an overload, slow-releasing
NPs may be crucial [77]. On the other hand, difficulties and safety
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issues might be a significant worry. Another challenge is
developing reproducible and scalable synthesis methods for
producing copper nanoparticles in an ecologically responsible
manner. Even though a number of green synthesis techniques have
been reported in the literature, producing consistent nanoparticle
sizes, shapes, and dispersibility remains highly challenging [78].
In conclusion, despite the tremendous progress made in the last
few decades in comprehending how Cu surfaces and NPs affect
microbes, there are still a lot of unresolved issues about their
antimicrobial properties [79].

5. Conclusion

Research on CuNPs for biomedical applications shows their
significant potential in various therapeutic fields, including wound
healing, antibacterial treatments, and cancer therapies. In term of
to current research, CuNPs have exceptional antibacterial qualities
that enable them to fight various diseases successfully, making
them valuable tools for infection control and preventative
measures. The unique physicochemical properties of CuNPs
facilitate the targeted and controlled release of therapeutic agents,
improving treatment effectiveness while reducing systemic
toxicity. Their potential as drug delivery vehicles is similarly
intriguing. Even though copper nanoparticles have great promise
for use in biomedicine, further study is needed to understand the
safety and effectiveness concerns fully.
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