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1. Introduction

Given the good performance including good biocompatibility, low-
er elastic modulus, excellent corrosion resistance, and high specific 
strength, Ti and its alloys are considered as the optimum materials for 
surgical implants [1]. With scientific advances, the third generation of 
titanium alloys as the new type of β alloys for biomedical applications 
has been developed such as Al-free Ti-Zr-Ta-Nb- and Ti-Zr-Mo-based 
alloys. The newly developed β titanium alloys have more advantages 
over conventional Ti alloys and are considered as more suitable materi-

als for human-implant applications [2].
In the past few decades, Ti alloys, especially, Ti-6Al-4V alloy and 

commercially pure (cp) Ti, have been widely utilized in orthopedic im-
plants due to their desirable biocompatibility, excellent corrosion prop-
erties, and promising mechanical performance. Based on the history 
of thermo-mechanical processing and material composition, titanium 
alloys have been divided into α, near-α, metastable β, stable β or α + β 
categories. Zr is a neutral stabilizer while elements such as Ta and Nb 
are isomorphs of β-stabilizers. Compared to cp titanium (α-Ti) and Ti-
6Al-4V (α + β Ti), β-Ti alloys exhibit some enhanced characteristics [3].

Table of contents
1. Introduction............................................................................................................................................................................................................................................ 61
2. Processing of β-titanium alloys.............................................................................................................................................................................................................. 62
3. Mechanical properties............................................................................................................................................................................................................................ 62
  3.1. Tensile strength................................................................................................................................................................................................................................. 62
  3.2. Fracture Toughness...........................................................................................................................................................................................................................63
  3.3. Fatigue...............................................................................................................................................................................................................................................63
4. Properties of TZNT alloys..................................................................................................................................................................................................................... 64
5. TZNT alloys for biomedical applications.............................................................................................................................................................................................. 64
  5.1 Application in orthopedic implants ................................................................................................................................................................................................... 64
  5.2 Application in dental implant............................................................................................................................................................................................................. 65
6. Conclusions and future insights............................................................................................................................................................................................................. 65

A B S T R A C T A R T I C L E  I N F O R M A T I O N

Owing to its good mechanical properties, enhanced wear resistance, good biological properties, biocompatibility, 
low cytotoxicity, and great corrosion behavior, Ti-Nb-Ta-Zr  (TZNT) alloy,  as new β titanium alloy, has attracted 
considerable attention for surgical implant applications. The need for the improvement of the implant properties in 
the physiological environment can be fulfilled by using the β titanium alloy with low elastic modulus. Additional-
ly, this alloy can inhibit the surgical implant fracture, infection, inflammation, and the reaction of soft tissue with 
particulate debris. Therefore, the aim of this paper is to review the properties and applications of TZNT alloy as a 
promising choice for surgical implant applications. 
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TNZT is a β-titanium quaternary alloy developed in recent years for 
orthopedic applications [4]. This alloy exhibits some promising prop-
erties including superior low elastic modulus [5-11] biocompatibility 
[12-16], good resistance to corrosion as well as the absence of toxic 
elements like vanadium and aluminum. The adverse tissue reaction and 
cytotoxicity resulting from V and Al have been extensively reported in 
the literature [3]. Complications caused by inflammation can be severe 
enough to make revision surgery necessary. Therefore, biomaterials and 
surface modification methods are required for the provision of the opti-
mal infection resistance. In this regard, a comprehensive understating of 
the complicated interactions that occur at the interface of bone-implant 
is required. Two-thirds of implant-associated infections and revision sur-
geries have been reported to be due to the interaction of biomaterial with 
Staphylococcus and Staphylococcus aureus epidermis [17, 18]. Thus, in-
vestigations on the novel TNZT alloy with promising characteristics for 
surgical implant applications have attracted the attention of researchers.

2. Processing of β-titanium alloys

β alloys usually undergo a hot working process and the subsequent 
heat treatment. In the leaner β alloys, the α+β field is where the final hot 
working operation is conducted, while in the richer β alloys, it is prefer-
entially performed in the β field. The heat treatment includes three steps: 
solution, quenching, and aging. If the solution treatment is performed 
above the temperature of β transus, the formed β grains will be coarse. 
On the other hand, the precipitation of the primary αp phase occurrs 
when the solution treatment is performed just below the β transus. The 
crystal structure of the α and β phases are illustrated in Fig.1. The αp vol-
ume fraction and shape is controlled by the heat treatment temperature 
and forging/rolling deformation, respectively. A needle-like αp is formed 
when no working is done and by increasing the time of hot working the 
shape moves toward a spherical αp shape [19]. 

An appropriate selection of deformation and temperatures initiating 
from the breakdown of ingot could control the size distribution and grain 
size of the β phase. It is possible to obtain small grain sizes by several 
deformation and recrystallization cycles [20].

A film-like α phase is preferentially precipitated in grain boundaries 
during the forging process, cooling process from β-forging, and final 
heat treatment. The suppression of the harmful precipitation of α in grain 
boundaries is possible by the high cooling rate from the beta phase re-
gion. If the cross-section is large, the grain boundary film can be broken 
by subsequent α/β-processing.

The secondary αs precipitation with fine distribution occurs at lower 
temperatures between 400 ˚C to 600 ˚C. Aging time and temperature 
besides the temperature of solution treatment could control the volume 
and size of the phase. Depending on the volume fraction of the precipi-

tates and their size, a remarkable strengthening effect can be achieved. In 
richer beta alloys, inhomogeneous precipitation of αs can be conducted, 
while in lean beta alloys it is homogeneous. In the case of rich beta 
alloys, grain boundaries are the first sites for precipitation and then the 
precipitates are formed in the grain leading to the creation of some lo-
cal unaged areas. Generally, a more homogenous distribution of the αs 
precipitates and an enhanced aging response can be obtained by cold 
work. To summarize, the control of the beta titanium alloys properties 
are influenced by β grain size, grain boundary α, the size, shape, and 
volume fraction of αp and αs [21, 22]. αp, αs, and grain boundary α are 
schematically illustrated in Fig. 2. 

3. Mechanical properties 

3.1. Tensile strength

Yield stresses in the range of 900 to 1400 MPa can be obtained by 
the aging of β titanium alloys. However, by increased aging, a significant 
reduction in ductility is observed in all β alloys. This is due to the larger 
difference between the yield stress of the aged β matrix soft and primary 
α as well as the increase of strain localization in the aged matrix that 
results in early crack nucleation [23]. Duplex aging processes have been 
used to improve the fatigue and toughness resistance in more highly 
β-stabilized alloys, which have inhomogeneous αs precipitations. The 
duplex aging consists of “low/high” - or “high/low” aging steps, which 
allow obtaining higher strength in shorter time, compared to aging in 
just one step [24, 25]. 

The ductility of the alloys can also be influenced by primary αp. 

Fig. 2. Primary, secondary and grain boundary α.

Fig. 1. Crystal structure of the α and β phases.
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The change from globular to acicular shape in primary αp and also its 
coarsening, resulting from the processing, leads to the ductility reduc-
tion. This is due to the increased slip length or effective size of the soft 
primary αp resulting in early crack nucleation [26]. Lower temperatures 
of solution heat treatment lead to the increase in the volume fraction of 
primary αp and the reduction of ductility at a constant yield strength. 
For obtaining desirable yield stress, higher aging of the β phase with 
a larger volume fraction of soft αp is required; however, this is in fa-
vor of crack nucleation. In other words, increased ductility and reduced 
yield strength is the consequence of the increased volume fraction of 
αp at a constant aging treatment [27]. There is a correlation between 
the effects of grain boundary and grain size. Strength is not affected by 
these parameters; however, they can influence ductility. Because of the 
localized strain in the soft α film in the grain boundary, ductility is re-
duced resulting in the occurrence of crack nucleation and subsequent 
fracture in grain boundaries [28, 29]. In the case of intergranular crack 
nucleation, no conclusive explanation existed for the effect of the grain 
size on ductility. 

3.2. Fracture Toughness

Fracture toughness is significantly reduced by increased aging. Ac-
cording to fractography analyses for ductility, the reason for this trend 
is an increase in localized strain and the strength difference between the 
aged matrix and the soft αp [30]. Single-step aging has been replaced 
by duplex aging to improve toughness and strength [24]. Studies indi-
cated that a combination of fine secondary α (resulting from low aging) 
and long, coarse primary α (resulting from high aging) forms a tortuous 
crack path leading to the increase in the toughness. Moreover, toughness 
will decrease when the shape of αp phase transforms from elongated to 

globular shape [31]. Based on fractographic studies, a more pronounced 
crack deviation occurs when elongated αp existed [32]. Increasing the 
volume fraction of αp can also decrease toughness drastically at constant 
yield strength. An increase in the degree of matrix aging compensates 
for the higher volume fraction of soft αp. The increased αp volume frac-
tion leads to an increase in toughness at constant aging [19].

Several authors [33, 34] have studied the role of grain boundary α 
and grain size. For instance, the fracture toughness of Ti-15-3 has been 
found to be reduced by beta grain refinement [35, 36]; while no effect 
was found for Ti-10-2-3 and Beta C [37]. It has been indicated that grain 
boundary α could lead to increase or decrease in fracture toughness, or  
it may has no effect on it. It has been reported that microstructures with 
very fine, recrystallized grains, and primary αp decorated with grain 
boundary α show a drastic drop in fracture toughness in comparison with 
the microstructure with large grains [38].

To explain contradictory observations, one should consider different 
parameters including grain boundary, grain size, stress state, plastic zone 
size, and degree of aging [39]. In the following conclusions, the plastic 
zone is confined to the grain boundary α which acts as a low energy 
fracture path (Fig. 3).

The transgranular pre-fatigue crack will be the initiation of the frac-
ture if the grain size is much larger than the plastic zone (large grain, 
high strength) [40]. Fracture toughness is not affected by grain boundary 
α in this fracture mode, because it is influenced by the intrinsic tough-
ness of the aged matrix. 

(II) The low energy path of soft grain boundary α can be the initia-
tion site of cracks and its propagation when the beta grain size is much 
smaller than the size of plastic zone (low strength, small grain). For the 
transgranular fracture, smaller fracture toughness is obtained at constant 
yield stress. In the case of active grain boundary fracture mechanism, the 
increase in grain size results in more tortuosity in the crack path and the 
subsequent enhancement of toughness. When a broken up grain bound-
ary α, called necklace, is formed instead of a continuous film, the cracks 
are still deflected; however, a higher energy path is provided and ductili-
ty is not reduced. Additionally, the plastic zone will be more confined to 
the grain boundary α film with an increase in matrix aging in the case of 
intergranular fracture, which will result in a lower toughness. Anisotro-
py in fracture toughness could be observed in stretched grains produced 
by forging due to the crack deviation effect and intergranular fracture. 

(III) In the absence of grain boundary α, beta grain size does not 
influence toughness fracture due to transgranular fracture [19].

To sum up, a combination of maximum crack deviation and high-
energy crack paths could result in an optimum toughness. This could be 
the combination of an aged matrix with acicular primary αp or a large 
grain size with a broken up grain boundary α.

3.3. Fatigue

Beta alloys have good fatigue potential; for example, a cycle fatigue 
strength (HCF) of Ti-10-2-3 with large cross-section has been reported 
to be 700 MPa (R= –1, Kt= 1), which cannot be achieved for any other 
titanium alloys [41]. HCF strength can be increased by the increase in 
0.2 % yield strength or aging. Some studies have also shown that the 
richer beta alloys exhibit a lower fatigue strength compared to leaner al-
loys. This is because αs is heterogeneously precipitated in the richer beta 
alloys. Because of using a duplex aging, an increase in fatigue strength 
was obtained due to a more homogeneous αs precipitation. Moreover, 
the results indicated that HCF strength could not exceed the upper limit 
by further aging. It can be concluded that at a higher strength, the soft 
regions such as primary αp, zones without precipitates, or grain boundary 
α, which are fatigue cracks initiation sites, become more dominant. This 
is because the difference of strength between the aged matrix and these 
soft zones becomes higher. Additionally, the higher fatigue strength can 

Fig. 3. Crack initiation and growth in β alloys.
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be due to the localized slip in the aged matrix [42, 43].
It has been also shown that the fatigue strength of beta titanium al-

loys is enhanced by grain size reduction. It has been discussed that grain 
boundary α is the crack nucleation site. Similar to static properties, de-
layed crack nucleation occurs due to the reduction of the slip length of 
grain boundary alpha in smaller grain sizes. The studies on the effect 
of α/β deformation on fatigue strength after β-forging indicated that a 
higher ratio of high cycle fatigue strength to yield strength was observed 
in the purely β-forged condition in comparison with the beta+ alpha/
beta-forged material with alpha/beta deformation higher than 30%. By 
an α/β deformation higher than 30%, high amounts of α grain boundary 
that were produced in the purely β-processed condition were effectively 
removed. This is also the reason why no further improvement of fatigue 
strength is observed in more than 30% α/β deformation. HCF strength is 
independent of the grain size effect in the case of grain boundary α sup-
pression and the initiation of cracks from the aged matrix [19, 44, 45]. 

There is still a lack of data to understand and optimize the fatigue 
behavior; however, the obtained results already shed light on the fatigue 
resistance improvement approaches including homogeneous dispersion 
of secondary α, suppression, or reduction of grain boundary α, small 
grain size, and aging to an optimum level.

4. Properties of TZNT alloys

As mentioned, Ti alloys with metastable β structure, are good candi-
dates for orthopedic applications due to high ductility, low elastic modu-
lus, and the good corrosion resistance in the body environment [46, 47]. 
To avoid problems such as the stress shielding and the consequent os-
teoporosis, the difference between Young’s moduli of bone and bioma-
terial should be reduced. Therefore, orthopedic materials are needed to 
have low Young’s modulus. In general, Young’s modulus of metastable 
β-Ti alloys is almost half of the Ti-6Al-4V alloy. By employing different 
methods such as conventional aging treatment [48, 49], severe plastic 
deformation [50], and the addition of alloying elements like Fe [23, 51], 
the strength of these alloys can be increased. 

Zareidoost et al. [6] investigated the properties of different TZNT al-
loys by adding Ag (TZNT-Ag), Sn (TZNT-Sn), and Fe (TZNT-Fe) alloy-
ing elements. After suction casting, dendritic morphology was formed 
in the designed alloys; however, a more homogenous microstructure 
was obtained for the TZNT-Ag alloy. TZNT, TZNT-Ag, and TZNT-Fe 
consisted of the β phase, while TZNT-Sn showed separation of β-lean 
and β-rich regions in the alloy. Moreover, upon cold compressive defor-
mation, very high ductility was obtained for the new TZNT alloys and 
TZNT-Ag showed the lowest Young’s modulus around 65 GPa. More-
over, the ratio of compressive yield stress to Young’s modulus was ob-
tained in the range of 0.92-1.08% for all the prepared alloys. TZNT-Ag 
revealed the highest corrosion resistance in Ringer’s solution. 

In another study also conducted by Zareidoost et al. [52], as-cast 
(Ti55Zr25Nb10Ta10)99.5-Fe0.5 alloy was cold-rolled and its effect on texture 
evolution and microstructure of the alloy was investigated. They report-
ed that after different cold-rolling stages, hardness increased which was 
proposed to be related to grain refinement, the increase of microstrain, 
and the decrease of crystallite size. Additionally, it was indicated that 
the reduction of elastic modulus with the cold deformation increase was 
related to the texture evolution. Cold rolling up to 90% resulted in the 
increase in the intensity of α-fiber texture and the consequent increase in 
hardness and decrease in Young’s modulus.

Li et al. [53] compared the corrosion behaviors of Ti12.5Zr2.5Nb2.
5Ta, Ti6Al7Nb, TA2, and Ti6Al4V in Ringer’s solution using the poten-
tiodynamic technique. According to the results, the corrosion resistance 
of TZNT was higher than that of TA2, Ti6Al7Nb, and Ti6Al4V. Ta2O5, 

Nb2O5, ZrO2, and TiO2 were the constituents of the passive film on the 

TZNT’s surface. These oxides with the nobler equilibrium constants 
improve the stability of the passive film. Additionally, adding elements 
with low electrochemical reaction potentials, such as Ta, Nb, and Zr 
could lead to the reduction of the anode activity and improvement of 
passive properties. 

5. TZNT alloys for biomedical applications 

5.1 Application in orthopedic implants

One of the promising candidates for applications in the orthopedic 
field is titanium alloys containing Ta, Zr, and Nb with metastable β phase 
[54-59]. This is because of their high corrosion resistance in biological 
environments, high ductility, low elastic modulus, and excellent bio-
compatibility [60]. However, due to their relatively low strength, the use 
of these alloys for orthopedic implants is limited [51, 52, 59, 61].

Approximately one million hip replacements has been recorded 
since 2003 in Northern Ireland, Wales, and England according to the 
National Joint Registry (NJR) report. Ti alloys, mainly Ti6Al-4V, have 
been utilized for decades in implant applications where load-bearing 
properties are required. However, they have some limitations including 
corrosion, wear [62], infection, aseptic loosening, and adverse soft tissue 
reaction to debris particles resulting in implant failure and the need for 
revision surgeries [18, 62]. In terms of mechanical properties, low frac-
ture toughness and low strength can result in implant fracture. The main 
reason for failure is the difference between the elastic modulus of im-
plant and bone, which results in stress shielding and resorption of bone. 
Using materials with a modulus close to the human bone, such as TNZT, 
is a sensible solution to this problem. These β-Ti alloys contain no toxic 
elements and have lowest elastic modulus among the β-Ti family. On 
the other hand, the poor wear behavior of TNZT limits its application as 
a load-bearing part of hip implants [63]. Therefore, the improvement of 
the implant properties is required. 

Laser surface nitriding of TNZT is a way to improve its biological 
response and mechanical properties. Titanium nitride has remarkable an-
tibacterial properties and good biocompatibility. In this regard, Donaghy 
et al. [18] used laser nitriding to apply an antibacterial surface on TNZT 
alloys for hip implant applications. They used incremental laser pow-
er to prepare laser-nitrided surfaces on TNZT. According to the results, 
rougher surfaces with distinctive features were formed by laser nitriding. 
Regardless of laser power, the surface of implants could be tailored to 
become hydrophilic after laser nitriding. It was proposed that fiber laser 
nitriding in a high power regime could be employed for the formation 
of antibacterial surface patterns on TNZT. It was observed that the most 
effective laser power was 45W, which created an overlapping crescent 
shape. With increasing power, the overlapping crescent shape becomes 
more obvious. Accordingly, laser-nitrided surfaces provided the implant 
with a remarkable antibacterial effect while showing no special advan-
tage to mesenchymal stem cell response.

The micro-scale abrasive wear property of Ti-35Nb-7Zr-6Ta alloy, 
as human-implant materials, in terms of load and sliding distance was 
studied by Zheng et al. [2]. The evaluation of micro-scale abrasive wear 
behavior of the alloy was carried out in distilled water and Hank’s solu-
tion and the influence of sliding and load distance was studied. Accord-
ing to the results, the increase in the distance led to the increase in the 
wear volume of the TZNT alloy due to the greater damage, however, 
the same regularity was not seen in the wear volume with the increase 
in load. At different simulated body fluids, the wear occurred under the 
same sliding distance. The wear mechanism affected the wear appear-
ance. In the wastage map, minor areas of low wastage were observed 
and the rest was medium wastage, and no high wastage was resent. The 
wastage map was attributed to the alloy wear volume under different 
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conditions. 
Acharya et al. [59] investigated the effect of the Zr addition to a Ti-

Nb-Ta-O alloy in terms of the functional response and mechanical prop-
erties for orthopedic applications. By varying the processing technique, 
different crystallographic textures were observed in Ti-Nb-Ta-Zr-O and 
Ti-Nb-Ta-O. It was found that both alloys possessed low elastic modu-
lus because they have beta microstructures, however, the lower elastic 
modulus belonged to the Ti-Nb-Ta-O alloy. This is due to its favorable 
orientation of crystals resulting from the absence of Zr in the structure. 
Because of the presence of oxygen atoms in interstitial sites, the values 
of tensile strength were noticeably high for both alloys. In comparison 
with Ti-Nb-Ta-O alloy, Ti-Nb-Ta-Zr-O showed higher strength reveal-
ing the hardening effect of Zr. Both alloys exhibited the satisfactory in 
vitro biological behavior and corrosion resistance. Additionally, im-
proved osteoblast attachment and lower corrosion rate were observed in 
the Ti-Nb-Ta-Zr-O alloy. It was concluded that the functional response 
and mechanical properties of both alloys were promising, and marginal 
improvement in the performance of Ti-Nb-Ta-Zr-O alloy for orthopedic 
applications was shown due to the presence of Zr. 

5.2 Application in dental implant

Dental implantology was first emerged in 1957 by Per-Ingvar Bråne-
mark, a Swedish orthopedic surgeon [64]. He found that bone continued 
to grow adjacent to Ti, which could provide bone with the capability 
to adhere to the Ti metal effectively without rejection. The adherence 
of bone to implant is called “osseointegration” and it is an important 
indicator of success rates in dental implantology [65, 66]. In 1982, the 
United States Food and Drug Administration recommended Ti as a den-
tal implant material. Since then, dental implant manufacturing compa-
nies have widely investigated the development of modern materials and 
the surface treatments to improve osseointegration and consequently, 
enhance the overall implant success [67-71]. 

A new binary alloy with the formulation of 13-17% zirconium and 
83-87% titanium has recently been introduced in dentistry for producing 
narrow-diameter implants. It has been claimed that better mechanical 
characteristics (40% higher fatigue strength and tensile strength of 953 
MPa) could be achieved by the application of this alloy in comparison 
with Ti-6Al-4V and cp Ti [72, 73]. Improved osseointegration can be ob-
tained by adding Zr to Ti [65], and enhanced biocompatibility is shown 
compared to pure titanium [74]. 

TZNT is considered as another new promising Ti alloy for surgical 
implants. This alloy benefits from the unique advantage of the elasticity 
modulus closer to the human bone than that of conventional Ti alloys 
as well as admission strain (0.65%) near to human bones (0.67%). The 
incorporation of alloying elements such as Ta, Nb, and Zr enhances the 
alloy corrosion resistance and no adverse tissue reactions or toxicity is 
observed [74-76].

Wang et al. [77] conducted osseointegration studies on Ti–Nb–Zr–
Ta–Si titanium alloy for dental implant materials. For the preparation 
of the alloy, high-energy ball milling was used and subsequently, re-
active sintering was performed. Based on the results, compared to cp 
Ti implants, the prepared Ti alloy implants exhibited a higher rate of 
mineral apposition after four weeks of healing. It was suggested that 
the prepared alloy implants showed osseointegration comparable to cp 
Ti implants. Additionally, a more favorable rate of mineral apposition 
was promoted by the Ti alloy implants compared to cp Ti implants. It 
was concluded that the prepared TZNT alloy could be considered as an 
alternative material for dental implants due to improved mineral matrix 
apposition rate and establishment of a close direct contact compared to 
cp Ti implants.

The corrosion resistance of Ti−Nb−Ta−Zr−Fe (TNTZF) alloy, which 
is currently utilized as replacement materials for dental implants, arti-

ficial hip joints, and other hard tissues, was studied by Xu et al. [78]. 
Compared to Ti–6Al–4V ELI alloy, TNTZF alloy showed wider passive 
region, passive current density with more stability, lower corrosion cur-
rent density, and higher corrosion potential indicating its better corrosion 
resistance. Additionally, in contrast to Ti–6Al–4V ELI alloy, pitting cor-
rosion was not indicated on its surface passive film. The surface passive 
film on TNTZF alloy was found to be composed of TiO, ZrO2, Ta2O5, 
NbO2, Nb2O5, and Ti2O3 oxides in the TiO2 matrix. These oxides provide 
the passive film of TNTZF with more stability and protective ability 
compared to Ti−6Al−4V ELI alloy leading to its superior corrosion re-
sistance. 

6. Conclusions and future insights

As elements such as titanium, niobium, zirconium, and tantalum 
exhibit good corrosion resistance and excellent biocompatibility in the 
physiological environments, they are incorporated in the initial Ti alloy 
(e.g., TZNT). Nb and Ta are also β-stabilizing alloying elements. More-
over, Zr plays a β-stabilizer role in titanium alloys containing Nb and/
or Ta. Owing to their excellent physicochemical properties, low density, 
high corrosion resistance, and good biocompatibility, TZNT alloy have 
been used as a surgical implant material. Additionally, the low elastic 
modulus of TZNT alloy can provide protection from adverse soft tis-
sue reaction to debris, inflammation, infection, and consequent implant 
failure. In conclusion, the development of TZNT alloy can lead to the 
achievement of a more promising candidate for application in surgical 
implants.

It has been found that improvement of properties, particularly in 
surgical implants, can be achieved by using TZNT alloy. Additionally, 
there is the possibility to fabricate special implant material and enhance 
the properties of these alloys to promote the surgical implants’ advan-
tages and reduce the risk factors, and consequently, the surgical implant 
failure. Thus, it is expected that this novel implant material should be 
improved owing to the optimal properties offered by TZNT implants. 
Meanwhile, these implants will be considered as alternatives to Ti-based 
and Zr-based implants in dental and orthopedic implantology.
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